Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Граф переходов, связность и эргодические цепи Маркова




Для цепи Маркова с непрерывным временем строится ориентированный граф переходов (кратко — граф переходов) по следующим правилам:

  • Множество вершин графа совпадает со множеством состояний цепи.
  • Вершины  соединяются ориентированным ребром , если qij > 0 (то есть интенсивность потока из i го состояния в j е положительна.

Топологические свойства графа переходов связаны со спектральными свойствами матрицы Q. В частности, для конечных цепей Маркова верны следующие теоремы:

  • Следующие три свойства А, Б, В конечной цепи Маркова эквивалентны (обладающие ими цепи иногда называют слабо эргодическими):

А. Для любых двух различных вершин графа переходов  найдется такая вершина k графа («общий сток»), что существуют ориентированные пути от вершины i к вершине k и от вершины j к вершине k. Замечание: возможен случай k = i или k = j; в этом случае тривиальный (пустой) путь от i к i или от j к j также считается ориентированным путем.

Б. Нулевое собственное число матрицы Q невырождено.

В. При  матрица P (t) стремится к матрице, у которой все строки совпадают (и совпадают, очевидно, с равновесным распределением).

  • Следующие пять свойств А, Б, В, Г, Д конечной цепи Маркова эквивалентны (обладающие ими цепи называют эргодическими):

А. Граф переходов цепи ориентированно связен.

Б. Нулевое собственное число матрицы Q невырождено и ему соответствует строго положительный левый собственный вектор (равновесное распределение).

В. Для некоторого t > 0 матрица P (t) строго положительна (то есть P ij (t) > 0 для всех i, j).

Г. Для всех tt > 0 матрица P (t) строго положительна.

Д. При t ®¥ матрица P (t) стремится к строго положительной матрице, у которой все строки совпадают (и совпадают, очевидно, с равновесным распределением).

Примеры

Рис. Примеры графов переходов для цепей Маркова: a) цепь не является слабо эргодической (не существует общего стока для состояний ); b) слабо эргодическая, но не эргодическая цепь (граф переходов не является ориентированно связным) c) эргодическая цепь (граф переходов ориентированно связен).

Рассмотрим цепи Маркова с тремя состояниями и с непрерывным временем, соответствующие графам переходов, представленным на рис. В случае (a) отличны от нуля только следующие недиагональные элементы матрицы интенсивностей — , в случае (b) отличны от нуля только , а в случае (c) — . Остальные элементы определяются свойствами матрицы  (сумма элементов в каждой строке равна 0). В результате для графов (a), (b), (c) матрицы интенсивностей имеют вид:





Поделиться с друзьями:


Дата добавления: 2018-10-14; Мы поможем в написании ваших работ!; просмотров: 360 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2456 - | 2381 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.