Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Общее решение системы линейных уравнений.




Теорема 7.12. Размерность пространства решений однородной СЛУ равна

n-rgA.

Доказательство. Рассмотрим однородную систему линейных уравнений Ax=0. Множество решений системы не изменится, если из матрицы удалить линейно зависимые строки. Поэтому, можно считать, что число строк матрицы A совпадает с её рангом. Пусть J – множество номеров столбцов матрицы A, в которых расположен максимальный не нулевой минор, T – остальное множество номеров столбцов. Систему уравнений можно записать в виде , где  подматрица матрицы A расположенная в столбцах с номерами из J,  - вектор, образованный компонентами x с номерами из J. Обозначим столбец, у которого все компоненты равны 0, кроме i-ой, равной 1, через . Вектор ,  является решением системы линейных уравнений. Обозначим этот вектор через  (). Система векторов  является линейно независимой, так как в строках с номерами из T расположена единичная матрица, определитель которой не равен 0. Пусть y - произвольное решение системы линейных уравнений, тогда , и, учитывая равенство  выводим  и, значит, . Поскольку произвольное решение системы линейных уравнений является линейной комбинацией линейно независимой системы векторов , то эта система векторов является базисом и размерность подпространства решений равна n-rgA.

Позднее будет показано, что любое подпространство может быть задано некоторой СЛУ.

Теорема 7.13 Общее решение неоднородной системы линейных уравнений равно сумме частного решения и общего решения соответствующей однородной системы линейных уравнений.

Доказательство. Очевидно.

Множество решений системы линейных уравнений (не однородной) называется линейным многообразием.

Двойственное пространство

Пусть V – линейное пространство над полем P. Линейной формой (функцией) над V называется функция, удовлетворяющая условиям

Свойство 7.3 Линейная форма определена своими значениями на базисных векторах.

Доказательство. Пусть  базис V. Вектор x из V разложим по базису . Тогда .

На множестве линейных форм определим операции сложения  и умножения на скаляр .

Свойство 7.4 Множество линейных форм образует линейное пространство

Доказательство. Проверим все аксиомы векторного пространства.

Определение 7.14 Пространство линейных форм называется двойственным к исходному пространству.

Свойство 7.5 Двойственное пространство изоморфно исходному.

Доказательство. Для доказательства достаточно показать совпадение размерностей исходного и двойственного пространств. Пусть  базис V. Определим линейные формы . Эти линейные формы линейно независимы, и через них выражается любая другая линейная форма. Таким образом, эти линейные формы образуют базис двойственного пространства, и размерность двойственного пространства совпадает с размерностью исходного пространства.

Элементы двойственного пространства называются ковекторами.

 Подпространству W линейного пространства V поставим в соответствие подпространство  двойственного пространства, состоящее из линейных форм, обращающихся в ноль на всех векторах из W. Отметим некоторые свойства этого соответствия.

Свойство 7.6. Справедливы равенства

1.

2.

3.

4.

Доказательство. Поскольку только нулевая форма обращается в ноль на всех векторах из V, то первое равенство установлено.

Пусть , тогда линейная форма f равна 0 на всех векторах из U+W, а, значит,  и  . Тем самым установлено включение . Пусть , тогда линейная форма f равна 0 на всех векторах из U и W, а, значит, она равна 0 на всех векторах из U+W, то есть . Таким образом, получено включение . Объединив включение получим второе равенство.

Третье равенство доказывается аналогично второму равенству.

Пусть  базис W, дополним его до базиса всего пространства векторами . Определим линейные формы , где j=1,…,n. Линейные формы  образуют базис двойственного пространства и  принадлежат . Покажем, что  базис . Возьмём произвольную линейную форму f из  и разложим её по базису . Тогда , и, значит, . Тем самым четвёртое равенство доказано.

Из четвёртого свойства вытекает, что размерность пространства решений системы однородных линейных уравнений равна разности размерности всего пространства и (строчечного) ранга матрицы.

Вектор из пространства V можно рассматривать как линейную форму в двойственном пространстве. Действительно,  и . Следовательно, подпространству F двойственного пространства к V можно поставить в соответствие подпространство  пространства V, образованное векторами из V, обращающими в 0 все линейные формы из F.

Свойство 7.7 Пусть  - подпространство конечномерного линейного пространства . Тогда .

Доказательство. Пусть , тогда  для всех линейных форм из , а, значит, . Тем самым установлено включение . Далее, , следовательно, .

Следствие 7.12 Любое подпространство арифметического пространства можно задать системой линейных уравнений.

Доказательство. Очевидным образом следует из равенства .

Рассмотрим задачу построения системы однородных линейных уравнений задающих линейную оболочку системы векторов  (для определённости будем считать эту систему векторов линейно независимой а исходное пространство арифметическим). Следуя проведённым теоретическим построениям, мы должны поступать следующим образом. Дополним систему векторов  до базиса всего пространства векторами . Далее, найдём обратную матрицу к матрице A, составленную из векторов . Последние n-k строк матрицы  будут определять требуемую систему. Однако, можно уменьшить объём вычислений. Действительно, базис подпространства  определяется как базис пространства решений однородной системы линейных уравнений .

Следствие 7.13 Любое линейное многообразие можно задать системой неоднородных уравнений.





Поделиться с друзьями:


Дата добавления: 2018-10-15; Мы поможем в написании ваших работ!; просмотров: 314 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2213 - | 2174 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.