Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Конечномерные пространства. Базис. Размерность. Дополнение до базиса. Базис суммы, пересечения.




Определение 7.9. Пространство называется конечномерным, если оно является линейной оболочкой конечной системы векторов.

Теорема 7.3. Подпространство конечномерного пространства – конечномерно.

Доказательство. Пусть V – конечномерное пространство, W – его подпространство. По определению, V представляется в виде линейной оболочки конечной системы векторов . Проведём доказательство теоремы индукцией по n. При n=1 утверждение очевидно, так как любое подпространство, содержащее не нулевой вектор, в этом случае, совпадает с V. Пусть утверждение доказано для n-1. Покажем его справедливость для n. Возьмём не нулевой вектор  и запишем его в виде линейной комбинации . Не нарушая общности можно считать  (иначе перенумеруем векторы ). Множество векторов  образует подпространство в линейной оболочке  и по предположению индукции это подпространство конечномерно. Пусть линейная оболочка векторов  совпадает с . Поскольку векторы  принадлежат W, то включение  очевидно. Пусть  - произвольный вектор W. Вектор  принадлежит подпространству  и , а значит, и их пересечению. Представим вектор  в виде линейной комбинации векторов  и выразим d (). Таким образом, установлено включение , из которого, в силу произвольности выбора d, выводим равенство , т.е. W - конечномерное подпространство.

Пусть V конечномерное пространство.

Определение 7.10. Минимальная полная система векторов из V называется базисом пространства. Число векторов в базисе называется размерностью пространства.

Размерность пространства V обозначают dimV.

Следствие 7.7 Размерность подпространства не превосходит размерности всего пространства. Если размерность подпространства совпадает с размерностью пространства, то подпространство совпадает с пространством.

Доказательство. Пусть W – подпространство конечномерного пространства V. Обозначим через  базис V. Подпространство W - конечно мерно (Теорема 7.3) и, значит, имеет базис . По теореме о замене выполняется неравенство . В случае равенства  из доказательства теоремы о замене вытекает совпадение линейных оболочек .

Определение 7.11. Коэффициенты разложения вектора по базису называются координатами.

Теорема 7.4. Координаты любого вектора существуют и единственны.

Доказательство. Поскольку базис полная система, то любой вектор пространства разложим по базису. Допустим вектор x имеет два различных разложения по базису  и . Вычтем одно из другого, получим равенство . В силу линейной независимости базисных векторов, все коэффициенты при базисных векторах равны нулю, а, значит разложения совпадают.

Координаты вектора  в базисе  обозначим через .

Следствие 7.8. Справедливы равенства , , .

Доказательство очевидно.

Теорема 7.5. (дополнение до базиса)

Базис подпространства конечномерного пространства можно дополнить до базиса всего пространства..

Доказательство. Пусть W подпространство V. Обозначим через  базис W а через  - базис V. В системе  удалим векторы, которые линейно выражаются через предыдущие вектора системы. Получившаяся система будет являться базой, а значит образует базис в пространстве V. Кроме того, векторы  линейно независимы, и не могут линейно выражаться через предыдущие вектора системы, и значит, они содержатся в базисе. Фактически получается, что система векторов  дополнилась некоторыми векторами из базиса V до базиса всего пространства.

Теорема 7.6 (размерность суммы) Пусть V,W – конечномерные подпространства. Тогда .

Доказательство. Обозначим через  базис пространства . Дополним его до базиса пространства V векторами  (т.е.  - базис V) и до базиса W - векторами  (т.е.  - базис W). Легко убедиться, что  совпадает с линейной оболочкой векторов . Далее, система векторов  линейно независима. Действительно, если не так, то линейная комбинация этих векторов с не нулевыми коэффициентами равна нулю. Пусть . Из равенства  выводим, что вектор y принадлежит V и W. Раз вектор y принадлежит пересечению , то все  (в силу единственности координат), что противоречит линейной независимости системы . Таким образом, система векторов  образует базис . Далее, имеем , ,  и . Для завершения доказательства осталось убедиться в справедливости равенства .





Поделиться с друзьями:


Дата добавления: 2018-10-15; Мы поможем в написании ваших работ!; просмотров: 297 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2456 - | 2381 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.