Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Правило Лопиталя




 

Другой способ раскрытия неопределенностей типа или доставляет так называемое правило Лопиталя, к изложению которого мы переходим.

Теорема Лопиталя Пусть функции и в некоторой проколотой окрестности удовлетворяют требованиям:

и непрерывны и дифференцируемы в

Если при этом существует(конечный или бесконечный) предел отношения производных: то и существует равный емупредел отношения самих функций:

Теорема Лопиталя Пусть функции и в некоторой проколотой окрестности удовлетворяют требованиям:

и непрерывны и дифференцируемы в

Если при этом существует (конечный или бесконечный) предел отношения производных: то и существует равный ему предел отношения самих функций:

Например,для рассмотренноговыше предела имеем

Лекция 4. Свойства функций, непрерывных на отрезке: ограниченность, достижение наибольшего и наименьшего значений, реализация всех промежуточных значений.Свойства дифференцируемой функции: монотонность, экстремумы. Схема построения графика функции с помощью первой производной





Поделиться с друзьями:


Дата добавления: 2015-02-12; Мы поможем в написании ваших работ!; просмотров: 447 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2223 - | 2152 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.