Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Схема испытаний Бернулли




 

Пусть в результате некоторого случайного испытания может произойти или не произойти определенное событие А. Испытание повторяется n раз. При этом соблюдаются условия: вероятность успеха Р (А) = р в каждом испытании одна и та же; результат любого испытания не зависит от исходов предыдущих испытаний.

Такая последовательность испытаний с двумя исходами (успех/неудача) называется последовательностью независимых испытаний Бернулли или схемой Бернулли.

Вероятность k успехов в n независимых испытаниях вычисляется по формуле Бернулли:

Здесь – число сочетаний из n по k: .

В практических задачах часто приходится вычислять вероятности различных событий, связанных с числом успехов в n испытаниях при больших значениях n. В этих случаях вычисления по формуле Бернулли становятся затруднительными. В отдельных случаях при больших n удается заменить формулу Бернулли приближенными формулами. Такие формулы, которые получаются при условии называются асимптотическими.

Если n достаточно велико, а p – величина очень малая, для формулы Бернулли имеет место приближенная (асимптотическая) формула

.

Здесь ( – греческая буква "лямбда"). Эта формула называется формулой Пуассона.

По формуле Пуассона вычисляются вероятности числа появлений очень редких событий в массовых испытаниях.





Поделиться с друзьями:


Дата добавления: 2015-02-12; Мы поможем в написании ваших работ!; просмотров: 1617 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Большинство людей упускают появившуюся возможность, потому что она бывает одета в комбинезон и с виду напоминает работу © Томас Эдисон
==> читать все изречения...

2512 - | 2180 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.006 с.