Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Функції і відображення




Усяке функціональне відношення можна розглядати як функцію. При цьому перша координата х упорядкованої пари є аргументом (перемінною), а друга — образом (значенням) функції. Звичайний запис у=f(x) відповідає співвідношенню xfy, або . Варто розрізняти функцію f як множину упорядкованих пар (відношення) і значення функції як другу координату однієї з таких пар.

Для усякого функціонального відношення А можна визначити зв'язану з цим відношенням функцію f. Але симетричне до нього відношення може і не бути функцією. Так, відношення

,

зворотне розглянутому в (1), не є функцією.

Якщо функціональне відношення усюди визначене на X, тобто його область визначення збігається з множиною X, то його називають відображенням множини Х в Y і записують

Відображення можна також розглядати як функцію f, визначену на множині Х і яка приймає значення в множині Y.

Як видно, різниця між відображенням і функцією зводиться до способу визначення цих відношень на множині X, причому відображення варто розглядати як окремий випадок функції. Однак більшість авторів не розрізняють поняття відображення і функції, залишаючи відкритим питання про область визначення. Якщо f - відображення або функція, то пишуть або простіше .





Поделиться с друзьями:


Дата добавления: 2015-02-12; Мы поможем в написании ваших работ!; просмотров: 699 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Чтобы получился студенческий борщ, его нужно варить также как и домашний, только без мяса и развести водой 1:10 © Неизвестно
==> читать все изречения...

2432 - | 2320 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.