ТОТОЖНОСТІ АЛГЕБРИ МНОЖИН
Лекции.Орг

Поиск:


ТОТОЖНОСТІ АЛГЕБРИ МНОЖИН




За допомогою операцій об'єднання, перехрещення і доповнення з множин можна складати різні алгебраїчні вирази. Позначимо через деякий алгебраїчний вираз, складений з множин X, Y і Z. Він саме являє собою деяку множину. Нехай — інший алгебраїчний вираз, складений з тих же множин. Якщо обидва алгебраїчні вирази уявляють собою ту саму множину, то їх можна порівняти один з одним, одержуючи алгебраїчну тотожність виду

=

Такі множини бувають дуже корисні при перетворенні алгебраїчних виразів над множинами, і деякі з них ми розглянемо нижче.

1. На мал. 1-6 приведені діаграми Эйлера — Венна для виразів і .

 

 

Мал 1-6.

Геометрична ілюстрація тотожності

=

 

З цих діаграм видно, що обидва вираження визначають ту саму множину, так, що в алгебрі множин має місце тотожність

=

аналогічна дистрибутивному закону (а+b)с=ас+bс у звичайній алгебрі.

2. В звичайній алгебрі ми не можемо замінити в дистрибутивному законі дію додавання множенням, а дію множення додаванням, тому що це приводить до абсурдного виразу (аb)+с= (а+с) (b+с). Інакше обстоїть справа в алгебрі множин.

 

 





Дата добавления: 2015-02-12; просмотров: 788 | Нарушение авторских прав | Изречения для студентов


Читайте также:

Рекомендуемый контект:


Поиск на сайте:



© 2015-2020 lektsii.org - Контакты - Последнее добавление

Ген: 0.002 с.