Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Метод Кутта-Мерсона решения задачи Коши для ОДУ 1 порядка




Мерсон предложил модификацию метода Рунге-Кутта четвертого порядка, позволяющую оценивать погрешность на каждом шаге и принимать решение об изменении величины шага. Схема Мерсона выглядит следующим образом:

(7.14)

 

где K 1 = h 3 f (xm, ym), h 3= h /3,
  K 2 = h 3 f (xm + h 3, ym + K 1),
  K 3 = h f (xm + h 3, ym +(K 1+ K 2) / 2),
  K 4 = K 1+ h 3 f (xm + h/ 2, ym +0,375(K 1+ K 3)),
  K 5 = h 3 f (xm + h, ym +1,5(K 4 - K 3)).

 

Эта схема требует на каждом шаге вычислять правую часть дифференциального уравнения в пяти точках, но она позволяет на каждом шаге определять погрешность решения R по формуле

R = 0,1(2 K 4 - 3 K 3 - K 5). (7.15)

Для автоматического изменения шага интегрирования рекомендуется следующий критерий. Если абсолютное значение величины R, вычисленное по формуле (7.15), на (m +1)-м шаге окажется больше допустимой заранее заданной погрешности , т.е. , то шаг h уменьшается вдвое и вычисления по схеме (7.14) повторяются с точки (xm, ym). При выполнении условия 32 шаг h можно удвоить начиная с точки (xm +1, ym +1).

Следует обратить внимание, что, если по условиям задачи требуется сохранять в памяти ЭВМ все вычисленные точки до конца решения, то, по сравнению с другими методами, здесь необходимо организовывать массив и для абсцисс точек, т.к. шаг изменения по оси OX - переменный.

 





Поделиться с друзьями:


Дата добавления: 2015-02-12; Мы поможем в написании ваших работ!; просмотров: 683 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинайте делать все, что вы можете сделать – и даже то, о чем можете хотя бы мечтать. В смелости гений, сила и магия. © Иоганн Вольфганг Гете
==> читать все изречения...

2312 - | 2095 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.