Лекции.Орг


Поиск:




Метод Эйлера решения задачи Коши для ОДУ 1 порядка




Одношаговые методы рассмотрим на примере решения обыкновенного дифференциального уравнения первого порядка вида

y' = f (x,y), (7.2)

при начальном условии

y(x0) = y0. (7.2’)

С помощью этих методов вычисляют последовательные значения y, соответствующие дискретным значениям независимой переменной x.

Метод Эйлера -это простейший метод решения задачи Коши, позволяющий интегрировать дифференциальные уравнения первого порядка. Его точность невелика, и поэтому на практике им пользуются сравнительно редко. Однако на основе этого метода легче понять алгоритмы других, более эффективных методов.

Итак, решается задача Коши (7.2, 7.2’). Запишем разложение для m =0, отбросим в нем члены, содержащие h во второй и более высоких степенях, и получим:

.   (7.5)

Величину находим из дифференциального уравнения (7.2), подставив в него начальное условие: . Таким образом можно получить приближенное значение зависимой переменной при малом смещении h от начальной точки.

Этот процесс можно продолжить, используя соотношение

(7.6)

и делая сколь угодно много шагов. Графически метод Эйлера показан на рис.7.3. Хотя тангенс угла наклона касательной к истинной кривой в исходной точке известен и равен y' (x 0), он изменяется в соответствии с изменением независимой переменной. Поэтому в точке x 0+ h наклон касательной уже не таков, каким он был в точке x 0. Следовательно, при сохранении начального наклона касательной на всем интервале [ x 0 ,x 1] в результаты вносится погрешность. Ошибка метода имеет порядок h 2, а сам метод является методом первого порядка, так как в его вычислительной формуле (7.6) параметр h имеет максимальную степень -1.

Рис.7.3. Геометрическая интерпретация метода Эйлера Рис.7.4. Ошибка метода Эйлера на m -м шаге




Поделиться с друзьями:


Дата добавления: 2015-02-12; Мы поможем в написании ваших работ!; просмотров: 666 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

1447 - | 1321 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.