Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Методы прямоугольников вычисления определенных интегралов




Данные методы относятся к простейшим из класса методов Ньютона-Котеса. В них подынтегральная функция f (x) на каждом интервале разбиения заменяется полиномом нулевой степени, т.е. константой. Такая замена является неоднозначной, т.к. константу можно выбрать равной значению f (x) в любой точке данного интервала разбиения.

В любом случае значение частичного интеграла определяется как произведение длины интервала разбиения на выбранную константу, т.е. как площадь прямоугольника. В зависимости от способа выбора аппроксимирующей константы различают методы левых, средних или правых прямоугольников (рис.6.4).

 

Левые Средние Правые

Рис.6.4. Геометрическая интерпретация методов прямоугольников

 

Введем следующие обозначения: точку a на оси OX обозначим через x 0, точку b - через x n, а точки разбиения промежутка [ a,b ] - через x 1, x 2,..., x n-1. Предполагается, что длина интервала разбиения постоянна на всем [ a,b ]. Обозначим ее через h:

; x i = x i-1 + h, i =1,2,..., N.

Тогда в методе левых прямоугольников площадь каждого i -го прямоугольника

S i = h f (x i), i = 0,1,2,..., n -1, (6.2)

а для всего промежутка [ a,b ]:





Поделиться с друзьями:


Дата добавления: 2015-02-12; Мы поможем в написании ваших работ!; просмотров: 627 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Свобода ничего не стоит, если она не включает в себя свободу ошибаться. © Махатма Ганди
==> читать все изречения...

2338 - | 2092 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.