Метод трапеций вычисления определенных интегралов
Лекции.Орг

Поиск:


Метод трапеций вычисления определенных интегралов




В этом методе подынтегральная функция f(x) на интервале [xi,xi+1] заменяется полиномом первой степени, т.е. наклонной прямой линией. Обычно эта прямая проводится через значения f(x) на границах интервала (рис.6.6). В этом случае приближенное значение частичного интеграла определяется площадью трапеции:

Рис.6.6. Геометрическая интерпретация метода трапеций , т.е. , а численное значение интеграла на всем [a,b] . Это вычислительная формула метода трапеций.   (6.12)     (6.13)

Выражение для главного члена погрешности частичного интеграла:

.

Тогда главный член полной погрешности метода трапеций имеет вид

,   (6.18)

т.е. метод трапеций имеет также второй порядок, но его погрешность в два раза больше, чем в методе средних прямоугольников, поэтому, если подынтегральная функция задана аналитически, то предпочтительнее из методов второго порядка использовать метод средних прямоугольников.





Дата добавления: 2015-02-12; просмотров: 461 | Нарушение авторских прав | Изречения для студентов


Читайте также:

Рекомендуемый контект:


Поиск на сайте:



© 2015-2020 lektsii.org - Контакты - Последнее добавление

Ген: 0.002 с.