Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Аппроксимация зависимостей




Постановка задачи, основные понятия

Одной из важнейших задач, возникающих в процессе математического моделиро­вания, является вычислений значений функций, входящих в математическое описание модели. Используемые в математических моделях функции зачастую задаются табличным способом, например, если они получены в результате эксперимента.

x f (x)
x0 f0
x1 f1
x2 f2
... ...
xn fn

Выбранные значения аргумента x называются узлами таблицы. В общем случае узлы не являются равноотстоящими. При проведении вычислительных работ обычно воз­ни­­кает необходимость "сгущать" эти таблицы, т.е. вычислять функцию для значений ар­гу­мента, не совпадающих с теми, которые попали в таблицу. Эта проблема решается путем замены функции f(x), для которой может быть даже неизвестно анали­ти­­чес­кое выраже­ние, некоторой функцией (x), имеющей сравнительно несложный аналитический вид и которая в некотором смысле близка к f(x). Приближение функции f(x) более прос­той функцией (x) называется аппроксимацией. Близости этих функций добиваются вве­дением в аппрокси­ми­ру­ю­щую функцию (x) свободных параметров c0, c1, c2,..., cn. Критерии «близости» аппроксимирующей функции (x) к неизвестной функции f(x) могут быть самые различные. Например, это может быть равенство значений (x) и f(x) в узлах таблицы, или минимум суммы квадратов разности между этими значениями. Для аппроксимации по первому критерию применяются полиноми­аль­ные и сплайновые методы; второй критерий используется методом наименьших квад­ратов.

Задачей интерполяции является построение аппроксимирующей функции (x) и нахождение по ней приближенных значений табличной функции f(x) при аргументах x, не совпадающих с узловыми, но содержащихся в интервале (x0, xn). Эти значения аргу­мента в дальнейшем будем называть точками интерполяции. Если же аппрокси­миру­ющую функцию вычисляют для точек, расположенных вне интервала [x0, xn], то такая задача называется экстраполяцией.





Поделиться с друзьями:


Дата добавления: 2015-02-12; Мы поможем в написании ваших работ!; просмотров: 770 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2780 - | 2342 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.