Решение систем линейных алгебраических уравнений методом Зейделя
Лекции.Орг

Поиск:


Устал с поисками информации? Мы тебе поможем!

Решение систем линейных алгебраических уравнений методом Зейделя




Процесс (4.22) можно видоизменить, если использовать приближения к решениям, найденные в ходе текущей итерации, при проведении этой же итерации:

  =  
  =  
  =   (4.24)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
  =  

Этот процесс называется методом Зейделя. Он приводит, как правило, к ускоре­нию сходимости по сравнению с процессом (4.22). Еще одним важным преиму­щес­твом метода Зейделя является меньший расход памяти ЭВМ, т.к. при его использо­ва­нии необходим один массив для хранения вектора-столбца приближений, а в методе простых итераций - два: по массиву на предыдущее и текущее приближения.

Для сходимости итерационных методов, т.е. для выполнения условия (4.23) при некотором конечном m, необходимо, чтобы значения диагональных элементов матри­цы СЛАУ были преобладающими по абсолютной величине по сравнению с другими элементами. Обеспечить это требование можно путем перестановки строк и (или) стол­б­­цов матрицы системы.






Дата добавления: 2015-02-12; Мы поможем в написании ваших работ!; просмотров: 420 | Нарушение авторских прав | Изречения для студентов


Читайте также:

Поиск на сайте:

Рекомендуемый контект:





© 2015-2021 lektsii.org - Контакты - Последнее добавление

Ген: 0.002 с.