Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Решение трансцендентных уравнений методом хорд




Пусть так же, как в методе дихотомий, известны две точки A и B (A<B),для которых sign F (A) ¹ sign F (B). В методе хорд (см. рис.3.4), в отличие от метода дихотомий, в ка­чес­тве очередного приближения P берется точка пересечения с осью абсцисс хорды, соединяющей точки (A, F (A)) и (B, F (B)).

 

Рис.3.4. Геометрическая интерпретация метода хорд

Уравнение прямой, проходящей через эти две точки запишем в виде: Y (x) = k x + c.

Коэффициенты k и c определяются из условий:

F (A) = k A + c; F (B) = k B + c.

Решая эту систему из двух уравнений, получим:

; c = F (A) - k A.

Точка P пересечения этой прямой с осью ОX определяется из уравнения

kP + c = 0.

Решая его, окончательно получаем:

. (3.4)

В методе хорд нельзя использовать в качестве критерия окончания вычислительного процесса неравенство (3.3), так как, как видно из рис.3.4, величина B – A не стремится к нулю. В данном методе, как и в рассматриваемых ниже, вычислительный процесс следует прекращать при выполнении неравенства

, (3.5)

т.е. если расстояние между двумя соседними приближениями к корню меньше заранее заданной величины .

Алгоритм метода хорд, следовательно, отличается от алгоритма метода дихотомий формулой вычисления приближения P и критерием окончания вычислительного процесса.





Поделиться с друзьями:


Дата добавления: 2015-02-12; Мы поможем в написании ваших работ!; просмотров: 1118 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2437 - | 2356 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.