![]() Поиск: Рекомендуем: ![]() ![]() ![]() ![]() Категории: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Решение трансцендентных уравнений методом хордПусть так же, как в методе дихотомий, известны две точки A и B (A<B),для которых sign F(A) ¹ sign F(B). В методе хорд (см. рис.3.4), в отличие от метода дихотомий, в качестве очередного приближения P берется точка пересечения с осью абсцисс хорды, соединяющей точки (A,F(A)) и (B, F(B)).
Рис.3.4. Геометрическая интерпретация метода хорд Уравнение прямой, проходящей через эти две точки запишем в виде: Y(x) = k x + c . Коэффициенты k и c определяются из условий: F(A) = k A + c ; F(B) = k B + c . Решая эту систему из двух уравнений, получим:
Точка P пересечения этой прямой с осью ОX определяется из уравнения kP + c = 0. Решая его, окончательно получаем:
В методе хорд нельзя использовать в качестве критерия окончания вычислительного процесса неравенство (3.3), так как, как видно из рис.3.4, величина B – A не стремится к нулю. В данном методе, как и в рассматриваемых ниже, вычислительный процесс следует прекращать при выполнении неравенства
т.е. если расстояние между двумя соседними приближениями к корню меньше заранее заданной величины Алгоритм метода хорд, следовательно, отличается от алгоритма метода дихотомий формулой вычисления приближения P и критерием окончания вычислительного процесса. Дата добавления: 2015-02-12; просмотров: 765 | Нарушение авторских прав | Изречения для студентов Читайте также:
Рекомендуемый контект: Поиск на сайте:
|