Лекции.Орг


Поиск:




Решение трансцендентных уравнений методом хорд




Пусть так же, как в методе дихотомий, известны две точки A и B (A<B),для которых sign F (A) ¹ sign F (B). В методе хорд (см. рис.3.4), в отличие от метода дихотомий, в ка­чес­тве очередного приближения P берется точка пересечения с осью абсцисс хорды, соединяющей точки (A, F (A)) и (B, F (B)).

 

Рис.3.4. Геометрическая интерпретация метода хорд

Уравнение прямой, проходящей через эти две точки запишем в виде: Y (x) = k x + c.

Коэффициенты k и c определяются из условий:

F (A) = k A + c; F (B) = k B + c.

Решая эту систему из двух уравнений, получим:

; c = F (A) - k A.

Точка P пересечения этой прямой с осью ОX определяется из уравнения

kP + c = 0.

Решая его, окончательно получаем:

. (3.4)

В методе хорд нельзя использовать в качестве критерия окончания вычислительного процесса неравенство (3.3), так как, как видно из рис.3.4, величина B – A не стремится к нулю. В данном методе, как и в рассматриваемых ниже, вычислительный процесс следует прекращать при выполнении неравенства

, (3.5)

т.е. если расстояние между двумя соседними приближениями к корню меньше заранее заданной величины .

Алгоритм метода хорд, следовательно, отличается от алгоритма метода дихотомий формулой вычисления приближения P и критерием окончания вычислительного процесса.





Поделиться с друзьями:


Дата добавления: 2015-02-12; Мы поможем в написании ваших работ!; просмотров: 1089 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

1302 - | 1071 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.