Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Решение трансцендентных уравнений методом простых итераций




Исходное уравнение (3.1) преобразуем к эквивалентному уравнению:

x = (x). (3.8)

Пусть известно начальное приближение (полученное, например, на этапе отделения корней): x = x 0. Подставим его в правую часть (3.8) и получим новое приближение: x 1 = (x 0). Повторяя эту процедуру, будем иметь в общем виде на некотором k-м шаге:

xk = (xk-1).

В качестве условия окончания вычислительного процесса можно взять выполнение неравенства: ½ xk - xk-1 ½ < .

Значение x k, удовлетворяющее ему, и есть корень уравнения F(x, a1, a2,..., ak) = 0.

Геометрическая интерпретация этого метода приведена на рис.3.8, 3.9. Здесь x * - истинное, искомое значение корня; x 0 - начальное приближение к корню; x 1, x 2, x 3 - оче­редные итерации.

Рис.3.8. Рис.3.9.

При испо­ль­зовании этого метода возникает вопрос о его сходимос­ти. Дело в том, что при некоторых условиях расстояние между истинным корнем и прибли­жениями к нему может возрастать с каждой новой итерацией, как это показано на рис.3.10, 3.11.

Рис.3.10. Рис.3.11.

Условием сходимости метода простых итераций является выполнение в окрестности искомого корня неравенства:

½ (x)½ < 1 (3.9)

Это условие является достаточным, т.е. если оно выполняется, то процесс обязательно схо­­дится; если же условие (3.9) не выполняется или выполняется не во всех точках

x 0, x 1, x 2,..., x k,...,

то заранее сказать что-либо конкретное о сходимости нельзя.

Итак, для решения уравнения F (x) = 0методом простых итераций надо преобразо­вать его к уравнению вида x = (x) так, чтобы выполнялось условие ½ (x)½ < 1. Схо­димость к истинному корню будет тем быстрее, чем ближе к единице значение (x).

Существует более или менее универсальный способ преобразования уравнения F(x, a1, a2,..., ak) = 0 к виду x = (x):

F (x) = 0 Þ C . F (x) = 0 Þ C . F (x) + x = x (3.15)

Здесь C - некоторый параметр, выбираемый из условия сходимости процесса.

При использовании преобразования (3.15) условием окончания вычислительного про­­це­сса является выполнение неравенства

.

В программе необходимо указывать функцию F (x) и вводить вычисленный заранее параметр С и значение допустимой погрешности . Программа должна осуществлять не более 100 итераций. Если за 100 итераций не достигнута требуемая точность, то программа выводит сообщение об отсутствии сходимости и прекращает работу.

 





Поделиться с друзьями:


Дата добавления: 2015-02-12; Мы поможем в написании ваших работ!; просмотров: 1880 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Люди избавились бы от половины своих неприятностей, если бы договорились о значении слов. © Рене Декарт
==> читать все изречения...

2475 - | 2271 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.