Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Производные высших порядков




I Определение и обозначения

Если функция дифференцируема на некотором промежутке, то её производная сама является функцией, определенной на этом промежутке. Следовательно, по отношению к ней можно ставить вопрос о существовании и нахождении производной. Если она существует, то её называют второй производной (или производной 2го порядка), и обозначают одним из символов

.

Аналогично, если существует производная от второй производной, то её называют третьей производной и обозначают, например, .

Вообще, производной n -го порядка называют производную от производной (n– 1)-го порядка и обозначают . Итак, по определению

.

II Производные некоторых функций

1. y= sin x, y= cos x

Первые производные этих функций и формулы приведения позволяют методом математической индукции получить выражения для производных n -го порядка:

.

2. y=xa

Если , то, последовательно дифференцируя, получим , , и вообще:

.

Если же показатель степени натуральный, то:

3. y=ax

, в частности, , .

4. y= ln x

,

.





Поделиться с друзьями:


Дата добавления: 2015-05-07; Мы поможем в написании ваших работ!; просмотров: 440 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2376 - | 2185 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.