Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Пример решения задачи. Двухопорная балка постоянного поперечного сечения нагружена заданной системой поперечных сил и изгибающих моментов




Задача

Двухопорная балка постоянного поперечного сечения нагружена заданной системой поперечных сил и изгибающих моментов.

 

 

1. Для данной балки, изготовленной из пластичного материала с допускаемым напряжением , подобрать из условия прочности двутавровое, прямоугольное (h/b=2) и круглое сечения. Дать заключение о рациональности формы сечения по расходу материала.

2. Для данной балки, изготовленной из хрупкого материала с допускаемыми напряжениями , , определить из условия прочности характерный размер сложного поперечного сечения, предварительно решив вопрос о его рациональном положении. Принять: , .

 

 

 

Решение

1. Рассмотрим первый случай, когда балка изготовлена из пластичного материала.

Построим эпюры поперечной силы и изгибающего момента :

 

По эпюре определяем положение опасного сечения – сечение К наиболее опасно, .

Подберем из условия прочности размеры трех форм сечений: двутаврового, прямоугольного и круглого. Для этого, прежде всего, найдем из условия прочности, каким минимальным моментом сопротивления должно обладать поперечное сечение балки:

.

Далее, для каждой из трех форм сечений выразим момент сопротивления с геометрической точки зрения через характерный размер сечения и, приравняв его к расчетному моменту сопротивления , определим характерный размер.

а) Двутавровое сечение:

Тонкостенные профили: двутавры, швеллеры, уголки выпускаются промышленностью определенных стандартных размеров. Номер профиля соответствует его высоте, выраженной в сантиметрах. Все характерные размеры таких профилей, а также их геометрические характеристики (в том числе и ) сведены в таблицы, которые называются «Сортаментом прокатных профилей» (см. Приложение 5, стр.119). Нам остается лишь по сортаменту указать номер двутавра, у которого момент сопротивления ближайший больший к расчетному: по сортаменту (ГОСТ 8239-89) подходит двутавр №27а, у которого , а площадь сечения .

б) Прямоугольное сечение (h/b =2):

Нейтральная линия прямоугольника – главная центральная ось . Расстояние от нейтральной линии до наиболее удаленных точек сечения . Тогда . Учитывая, что , выразим момент сопротивления прямоугольника через характерный размер b: . Приравняв его к расчетному значению, находим минимально допустимый размер прямоугольника:

,

тогда площадь прямоугольника: .

в) Круглое сечение:

Здесь все аналогично: нейтральная линия – ось , . Тогда

.

Площадь круглого сечения: .

Наиболее рациональной формой сечения по расходу материала является та, которая имеет наименьшую площадь:

< < .

Следовательно, двутавровое сечение является наиболее рациональным.


2. Рассмотрим балку из хрупкого материала и подберем из условия прочности характерный размер заданного сложного сечения, геометрические характеристики которого были определены в Теме 3.

Нейтральная линия сечения – главная центральная ось , проходящая через центр тяжести. Она делит всё сечение на две зоны – растянутых и сжатых волокон. Учитывая правило знаков для эпюры изгибающих моментов (строится на растянутых волокнах), легко определить расположение соответствующих зон в опасном сечении. На эпюре в опасном сечении К ордината расположена выше осевой линии, следовательно, в этом сечении сверху от нейтральной линии расположены растянутые волокна, а снизу – сжатые. Определим расстояния от нейтральной линии до наиболее удаленных точек сечения в зонах растяжения и сжатия: и , учитывая положение центра тяжести сечения (см стр.31):

Решим вопрос о рациональности расположения сечения. Поскольку > , а < , значит сечение расположено нерационально и его нужно перевернуть на :

Теперь условие рациональности выполняется:

> .

Определим положение опасного волокна в опасном сечении:

< ,

следовательно, согласно условию (2) алгоритма опасным является наиболее растянутое волокно.

Запишем условие прочности для растянутого волокна и определим характерный размер сложного сечения , учитывая ранее определенное значение момента инерции .

.

Задача решена.





Поделиться с друзьями:


Дата добавления: 2015-01-29; Мы поможем в написании ваших работ!; просмотров: 1706 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2438 - | 2357 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.