Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Линейные преобразования в базисе из собственных векторов. Линейные преобразования с простым спектром




Теорема 39. Линейное преобразование j линейного пространства Ln над полем Р имеет в базисе е = (е1, е2,..., еn) диагональную матрицу тогда и только тогда, когда все векторы базиса являются собственными векторами преобразования j.

Доказательство. Þ Пусть матрица А линейного преобразования j в базисе е – диагональная. Тогда j (ек) = lк для любого к = 1, 2, …, n. Но это значит, что все базисные векторы – собственные..

Ü Пусть все базисные векторы – собственные. Тогда j (ек) = lк. Следовательно, в к -ом столбце матрицы этого преобразования на всех местах, кроме к -го, стоят нули и акк = lк. Отсюда и следует, что матрица преобразования – диагональная.

Следствие. Квадратная матрица n -го порядка подобна диагональной тогда и только тогда, когда для соответствующего этой матрице линейного преобразования существует базис из собственных векторов.

Определение 42. Говорят, что линейное преобразование j линейного пространства Ln над полем Р имеет простой спектр, если все его характеристические корни различны и принадлежат полю Р.

Теорема 40. Если линейное преобразование j линейного пространства Ln над полем Р имеет простой спектр, то в Ln существует такой базис, в котором это преобразование имеет диагональную матрицу.

Теорема 41. Пусть А – квадратная матрица с элементами из поля Р. Если все характеристические корни матрицы А различны и принадлежат полю Р, то эта матрица подобна диагональной.

 

VII. ЕВКЛИДОВЫ ПРОСТРАНСТВА

Скалярное произведение векторов, его свойства. Определение и примеры евклидовых и унитарных пространств

Пусть L линейное пространство над полем Р. В L определены две алгебраические операции: сложение векторов и умножение векторов на элементы поля Р, Введём ещё одну внутреннюю алгебраическую операцию, являющуюся обобщением скалярного произведения геометрических векторов. В основу определения этой операции положим те свойства скалярного произведения геометрических векторов, которые были получены в аналитической геометрии. При этом определения скалярного произведения в случае, когда поле Р является полем действительных чисел, отличается от случая, когда Р = С.

Определение 43

а) Р = R Будем говорить, что в действительном линейном пространстве L определено скалярное произведение векторов, если каждой упорядоченной паре векторов а и в из L поставлено в соответствие число (а, в) Î R, удовлетворяющее следующим требованиям (аксиомам скалярного произведения): 1. (а, в) = (в, а) для любых а и в из L; 2. (а + в, с) = (а, с) + (в, с) для любых а, в, с из L; 3. (aа, в) = a (а, в) для любых а и в из L и любого a Î R; 4. (а, а) > 0, если а ¹ 0; (а, а) = 0, если а = 0. б) Р = С Будем говорить, что в комплексном линейном пространстве L определено скалярное произведение векторов, если каждой упорядоченной паре векторов а и в из L поставлено в соответствие число (а, в) Î С, удовлетворяющее следующим требованиям (аксиомам скалярного произведения): 1. = для любых а и из L; 2. (а + в, с) = (а, с) + (в, с) для любых а, в, с из L; 3. (aа, в) = a (а, в) для любых а и в из L и любого a Î С; 4. (а, а) Î R и (а, а) > 0, если а ¹ 0; (а, а) = 0, если а = 0.

Скалярное произведение векторов можно обозначать (а, в) или а×в.

Свойства скалярного произведения.

а) Р = R 10. (а, aв) = a (а, в) для любых а и в из L и любого a Î R; 20. (a × а,b× в) = a×b (а, в) для любых а и в из L и любых a, b Î Р; 30. (a × а + b× в, ) = ag× (а, с) + bg (в, с) для любых а, в и с из L и любых a, b, g Î Р; 40. (а, 0) = 0 для любого вектора а Î L. б) Р = С 10. (aа, в) = × (а, в) для любых а и в из L и любого a Î С; 20. (a × а,b× в) = (а, в) для любых а и в из L и любых a, b Î С; 30. (a × а + b× в, ) = (а, с) + b (в, с) для любых а, в и с из L и любых a, b, g Î С; 40. (а, 0) = 0 для любого вектора а Î L.

 

Определение 44. Действительное линейное пространство, в котором определено скалярное произведение векторов, называется евклидовым пространством.

Определение 45. Комплексное линейное пространство, в котором определено скалярное произведение векторов, называется унитарным пространством.

Так как и евклидово и унитарное пространства являются линейными пространствами, то для них верно всё то, что было сказано об этих пространствах. Но введение скалярного произведения позволяет ввести в этих пространствах метрику. В частности n -мерное линейное пространство, в котором введено скалярное произведение векторов, называется n-мерным евклидовым (или унитарным) пространством. Евклидово n -мерное пространство будем обозначать Еn (унитарное пространство - Un).

Примеры евклидовых пространств.

1. Пусть L – множество всех непрерывных на промежутке [a, b] действительных функций. Это множество является линейным пространством. Скалярное произведение определим по следующему правилу. Если f и g – две непрерывные на [a, b] функции, то пусть (f,g) = . Из свойств определённого интеграла следует, что все требования определения 43 (а) выполняются. Следовательно, если в пространстве всех непрерывных на промежутке [a, b] действительных функций ввести указанным способом скалярное произведение, то оно становится евклидовым пространством.

2. Пусть М2 – множество квадратных матриц с действительными элементами, это множество является линейным пространством на полем R. Определим скалярное произведение формулой . Легко проверить, что все требования определения 43 (а) выполняются. Множество М2 стало евклидовым пространством.

3. Пусть М2 – множество квадратных матриц с комплексными элементами, это множество является линейным пространством на полем С. Определим скалярное произведение формулой . Легко проверит, что все требования определения 43 (б) выполняются. Получили пример унитарного пространства.

Определение 46. Множество М элементов евклидова пространства Е называется подпространством пространства Е, если оно само является евклидовым пространством относительно того же скалярного произведения, что и Е. Аналогично определяется подпространство унитарного пространства.

 





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 628 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Даже страх смягчается привычкой. © Неизвестно
==> читать все изречения...

2456 - | 2156 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.