Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Собственные векторы и собственные значения линейного преобразования




Пусть L n – линейное n-мерное пространство над полем Р, j: Ln ® Ln – линейное преобразование и А –матрица этого преобразования в некотором базисе е.

Определение 40. Ненулевой вектор а называется собственным вектором преобразования j, если j (а) = а для некоторого l Î Р. Элемент l называется собственным значением преобразования j.

По определению собственного вектора, а – собственный вектор преобразования j Û $ l Î Р: j (а) = а. Перепишем это равенство в координатах, получим А× х = l× х. Отсюда А× х () × х = О, или (А –lЕ)× х = О. Итак, а – собственный вектор преобразования j Û столбец координат этого вектора является ненулевым решением уравнения (А –lЕ)× х = О (38). Матрица (А –lЕ) называется характеристической матрицей для матрицы А. Матричное уравнение (38) перепишем в виде системы уравнений. Получим, что а – собственный вектор

(39) преобразования j Û (х1, х2, …, хn) – ненулевое решение системы (39), при этом все хк принадлежат полю Р. Так как (39) система линейных однородных уравнений и число уравнений равнее числу неизвестных, то она имеет ненулевое решение тогда и только тогда, когда её определитель равен нулю, т.е.
(40) имеет место равенство (340). Уравнение (40) называется характеристическим уравнением матрицы А. Определитель системы, т.е. | А – lЕ |, называется характеристическим многочленом матрицы А.

Корни характеристического многочлена называются характеристическими корнями матрицы А. (Характеристический корень не всегда принадлежит полю Р). Множество всех характеристических корней матрицы А называется её спектром.

Согласно определению 40, l Î Р. Пусть l0 Î Р и является характеристическим корнем матрицы А. При l0 система (39) имеет ненулевое решение, т. е. j будет иметь собственный вектор и l0 будет собственным значением преобразования j, заданного матрицей А.

Теорема 37. Характеристические многочлены подобных матриц одинаковы.

Доказательство. Пусть В = С–1×А×С. Так как матрица перестановочна с любой матрицей, то | В – lЕ | = | С–1×А×С – lЕ | = | С–1×А×С – С–1 × (С | = | С–1× (А – lЕС | = | С–1 || А – lЕ || С | = | А – lЕ |.

Так как матрицы линейного преобразования в разных базисах подобна, то

Следствие. Матрицы линейного преобразования в разных базисах имеют один и тот же спектр.

Определение 41. Спектр матрицы линейного преобразования в каком-нибудь базисе называется спектром линейного преобразования.

Теорема 38. Собственными значениями линейного преобразования j: Ln ® Ln, действующего в линейном пространстве над полем Р, являются характеристические корни этого преобразования, принадлежащие полю Р, и только они.

Доказательство этой теоремы вытекает из всего сказанного выше.

Можно сформулировать следующие правила нахождения собственных значений и собственных векторов линейного преобразования.

1. Записать матрицу данного преобразования в некотором базисе.

2. Составить характеристическое уравнение и найти его корни, принадлежащие полю Р (т.е. найти собственные значения).

3. Если l0 – собственное значение, то составить систему и найти её ненулевые решения.

Пример. Найти собственные значения и собственные векторы линейного преобразования j: L4 ® L4 (над полем R), если это преобразование в базисе е = (е 1, е2, е3, е4) имеет матрицу А.

А = . Решение. Составим характеристическое уравнение (*). Используя теорему Лапласа, раскроем определитель, получим уравнение: (*)

, [(1 – l)2 – 1]×[(1– l)×(3 – l) – 6] = 0. Возможны два случая:

1) (1 – l)2 – 1 = 0, 1 – l = ± 1. Отсюда l1 = 0, l2 = 2.

2) (1– l)×(3 – l) – 6 = 0, l2 4 l – 3 = 0, l3 = , l4 = . Итак, характеристическое уравнение имеет четыре корня, все они действительные. Поэтому данное преобразование имеет четыре собственных значения. Для каждого из них составим систему уравнений для нахождения собственных векторов.

1) При l = 0. Отсюда х2 = – х1. Подставим в третье и четвёртое уравнения, получим Отсюда

Решив последнюю систему, получим х4 = , х3 = . Если х1 = 3 С, то х2 = –3 С, х3 = 13 С, х4 = – 11 С, С – любое действительное число, отличное от нуля. Итак, собственными векторами, принадлежащими собственному значению l = 0, являются все ненулевые векторы вида (3 С, – 3 С, 13 С, –11 С).

2) При l = 2. Отсюда х2 = х1. Подставим в третье и четвёртое уравнения. Отсюда

Решив последнюю систему, получим х3 = , х4 = Если х1 = 7 С, то х2 = 7 С, х3 = –15 С, х4 = –11 С, где С – любое отличное от нуля действительное число. Итак, собственными векторами, принадлежащими собственному значению l = 2, являются все ненулевые векторы вида (7 С, 7 С, –15 С, –11 С).

3) При l = . Из первых двух уравнений х1 = х2 = 0. Подставив в третье и четвёртое уравнения, получим
Из этой системы , х3 – любое отличное от нуля действительное число. Если х3 = 2 С, то . Итак, собственными векторами, принадлежащими собственному значению l = 2 + , являются все ненулевые векторы вида (0, 0, 2 С, ).
4) При l = . Из первых двух уравнений х1 = х2 = 0. Подставив в третье и четвёртое уравнения, получим
Из полученной системы , х3 – любое отличное от нуля действительное число. Если х3 = 2 С, то . Итак, собственными векторами, принадлежащими собственному значению l = 2 + , являются все ненулевые векторы вида (0, 0, 2 С, (1 ) С).

Свойства собственных векторов.

10. Если вектор а – собственный вектор преобразования j, принадлежащий собственному значению l и a ¹ 0, то а – тоже собственный вектор, принадлежащий тому же собственному значению.

Если j (а) = l а, то j (a а) = aj (а) = a (l а) = l (a а).

20. Множество всех собственных векторов линейного преобразования j: Ln ® Ln, принадлежащих одному и тому же собственному значению (если к ним добавить нулевой вектор), есть линейное подпространство в Ln.

Пусть а и в два собственных вектора и j (а) = l а, j (в) = l в. Тогда j (a а + b в) = aj (а) + bj (в) = a (l а) + b (l в) = l (a а + b в).

30. Собственные векторы, принадлежащие различным собственным значениям, линейно независимы.

Пусть j (а) = l а, j (в) = l1 в, l ¹ l1. Если бы а и в были бы линейно зависимы, то хотя бы один из них линейно выражался через другой пусть в = a а. Так как в – собственный вектор, то a ¹ 0. Тогда j (в) = j (a а). Отсюда l1 в = a(l а), l1(a а) = a(l а), a (l1 – l) а = 0. Но в левой части a ¹ 0, l1 – l ¹ 0, а ¹ 0. Противоречие. Следовательно, а и в – линейно независимы.

40. Если в базисе е = (е1, е2,..., ек, …, еn) вектор ек – собственный вектор линейного преобразования j, принадлежащий собственному значению l, то в к -ом столбце матрицы этого преобразования на всех местах, кроме к -го, стоят нули и акк = l.

 





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 735 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Так просто быть добрым - нужно только представить себя на месте другого человека прежде, чем начать его судить. © Марлен Дитрих
==> читать все изречения...

2463 - | 2219 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.