Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Доказательство теоремы синусов




Построим произвольный треугольник, вписанный в окружность. Обозначим его как ABC.
Для доказательства всей теоремы, поскольку размеры треугольника выбраны произвольным образом, достаточно доказать, что соотношение одной произвольной стороны к противолежащему ей углу равно 2R. Пусть это будет 2R = a / sin α, то есть если взять по чертежу 2R = BC / sin A.

Проведем диаметр BD для описанной окружности. Образовавшийся треугольник BCD является прямоугольным, поскольку его гипотенуза лежит на диаметре описанной окружности (свойство углов, вписанных в окружность).

Поскольку, углы, вписанные в окружность, опирающиеся на одну и ту же дугу, равны, то угол CDB либо равен углу CAB (если точки A и D лежат по одну сторону от прямой BC), либо равен π - CAB (в противном случае).

Обратимся к свойствам тригонометрических функций. Поскольку sin(π − α) = sin α, то указанные варианты построения треугольника все равно приведут к одному результату.

Вычислим значение 2R = a / sin α, по чертежу 2R = BC / sin A. Для этого заменим sin A на соотношение соответствующих сторон прямоугольного треугольника.

2R = BC / sin A
2R = BC / (BC / DB)
2R = DB

А, поскольку, DB строился как диаметр окружности, то равенство выполняется.
Повторив то же рассуждение для двух других сторон треугольника, получаем:

Теорема синусов доказана.

Теорема синусов

Примечание. Это часть урока с задачами по геометрии (раздел теорема синусов). Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. В задачах вместо символа "квадратный корень" применяется функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение.

Теорема синусов:
Стороны треугольника пропорциональны синусам противолежащих углов, или, в расширенной формулировке:
a / sin α = b / sin β = c / sin γ = 2R
где R - радиус описанной окружности

Теорию - формулировку и доказательство теоремы подробно см. в главе "Теорема синусов".

Задача

В треугольнике XYZ угол Х=30 угол Z=15. Перпендикуляр YQ к ZY делит сторону ХZ на части XQ и QZ.Найти XY, если QZ=1.5м

Решение.
Высота образовала два прямоугольных треугольника XYQ и ZYQ.
Для решения задачи воспользуемся теоремой синусов.
QZ / sin(QYZ) = QY / sin(QZY)

QZY = 15 градусов, Соответственно, QYZ = 180 - 90 - 15 = 75

Примем во внимание табличные значения некоторых тригонометрических функций:

  • синус 15 градусов равен sin(15) =
  • синус 75 градусов равен sin(75) =

 

(или то же самое "при записи в одну строку") QZ / sin(75) = QY / sin(15) QZ / ((√3 + 1) / (2√2)) = QY / ((√3 - 1) / (2√2)) QZ * 2√2 / (√3 + 1) = QY * 2√2 / (√3 - 1) 3√2 (√3 - 1) = QY * 2√2 (√3 + 1) QY = 3√2 (√3 - 1) / (2√2 (√3 + 1)) QY = 3/2 (√3 - 1) / (√3 + 1)

Поскольку длина высоты треугольника теперь известна, найдем XY по той же теореме синусов.

QY / sin(30) = XY / sin(90)

Примем во внимание табличные значения некоторых тригонометрических функций:

  • синус 30 градусов равен sin(30) = 1 / 2
  • синус 90 градусов равен sin(90) = 1

тогда

QY = XY sin (30)
3/2 (√3 - 1) / (√3 + 1) = 1/2 XY
XY = 3 (√3 - 1) / (√3 + 1) ≈ 0.8 м

Ответ: 0,8 м или 3 (√3 - 1) / (√3 + 1)

Теорема синусов (часть 2)

Примечание. Это часть урока с задачами по геометрии (раздел теорема синусов). Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме.

Теорию подробно см. в главе "Теорема синусов".

Задача

Сторона АВ треугольника ABC равна 16см. Угол А равен 30 градусам. Угол В равен 105 градусам. Вычислите длину стороны ВС.

Решение.
Согласно теореме синусов, стороны треугольника пропорциональны синусам противолежащих углов:
a / sin α = b / sin β = c / sin γ

Таким образом
BC / sin α = AB / sin γ

Величину угла С найдем, исходя из того, сумма углов треугольника равна 180 градусам.
С = 180 - 30 -105 = 45 градусов.

Откуда:
BC / sin 30° = 16 / sin 45°

BC = 16 sin 30° / sin 45°

Обратившись к таблице тригонометрических функций, находим:

BC = (16 * 1 / 2) / √2/2 = 16 / √2 ≈ 11,3 см

Ответ: 16 / √2

Задача.
В треугольнике ABC угол А = α, угол С = β, ВС = 7см, ВН - высота треугольника.
Найти АН

Решение.
Для решения задачи воспользуемся теоремой синусов. Из нее следует, что:

BC / sin α = AB / sin β

то есть
7 / sin α = AB / sin β
AB = 7 sin β / sin α

Теперь рассмотрим треугольник ABH. По условию задачи BH - высота, значит он является прямоугольным. Угол AHB = 90 градусам.
Тогда угол ABH = 180 - 90 - α. = 90 - α.
Для него будет верно соотношение:

AB / sin 90 = AH / sin (90 - α)

Из таблицы значений тригонометрических функций учтем что sin 90 = 1, тогда

AB = AH / sin (90 - α)

Из формул приведения тригонометрических функций учтем что sin(90 - α) = cos α, тогда

AB = AH / cos α

Подставим значение AB

7 sin β / sin α = AH / cos α
AH sin α = 7 sin β cos α
AH = 7 sin β cos α / sin α

Из тех же тригонометрических тождеств выясним, что cos α / sin α = ctg α, тогда

AH = 7 sin β ctg α

Ответ: 7 sin β ctg α

Теорема косинусов





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 2335 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

2533 - | 2390 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.