Построим произвольный треугольник, вписанный в окружность. Обозначим его как ABC.
Для доказательства всей теоремы, поскольку размеры треугольника выбраны произвольным образом, достаточно доказать, что соотношение одной произвольной стороны к противолежащему ей углу равно 2R. Пусть это будет 2R = a / sin α, то есть если взять по чертежу 2R = BC / sin A.
Проведем диаметр BD для описанной окружности. Образовавшийся треугольник BCD является прямоугольным, поскольку его гипотенуза лежит на диаметре описанной окружности (свойство углов, вписанных в окружность).
Поскольку, углы, вписанные в окружность, опирающиеся на одну и ту же дугу, равны, то угол CDB либо равен углу CAB (если точки A и D лежат по одну сторону от прямой BC), либо равен π - CAB (в противном случае).
Обратимся к свойствам тригонометрических функций. Поскольку sin(π − α) = sin α, то указанные варианты построения треугольника все равно приведут к одному результату.
Вычислим значение 2R = a / sin α, по чертежу 2R = BC / sin A. Для этого заменим sin A на соотношение соответствующих сторон прямоугольного треугольника.
2R = BC / sin A
2R = BC / (BC / DB)
2R = DB
А, поскольку, DB строился как диаметр окружности, то равенство выполняется.
Повторив то же рассуждение для двух других сторон треугольника, получаем:
Теорема синусов доказана.
Теорема синусов
Примечание. Это часть урока с задачами по геометрии (раздел теорема синусов). Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. В задачах вместо символа "квадратный корень" применяется функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение.
Теорема синусов:
Стороны треугольника пропорциональны синусам противолежащих углов, или, в расширенной формулировке:
a / sin α = b / sin β = c / sin γ = 2R
где R - радиус описанной окружности
Теорию - формулировку и доказательство теоремы подробно см. в главе "Теорема синусов".
Задача
В треугольнике XYZ угол Х=30 угол Z=15. Перпендикуляр YQ к ZY делит сторону ХZ на части XQ и QZ.Найти XY, если QZ=1.5м
Решение.
Высота образовала два прямоугольных треугольника XYQ и ZYQ.
Для решения задачи воспользуемся теоремой синусов.
QZ / sin(QYZ) = QY / sin(QZY)
QZY = 15 градусов, Соответственно, QYZ = 180 - 90 - 15 = 75
Примем во внимание табличные значения некоторых тригонометрических функций:
- синус 15 градусов равен sin(15) =
- синус 75 градусов равен sin(75) =
(или то же самое "при записи в одну строку") QZ / sin(75) = QY / sin(15) QZ / ((√3 + 1) / (2√2)) = QY / ((√3 - 1) / (2√2)) QZ * 2√2 / (√3 + 1) = QY * 2√2 / (√3 - 1) 3√2 (√3 - 1) = QY * 2√2 (√3 + 1) QY = 3√2 (√3 - 1) / (2√2 (√3 + 1)) QY = 3/2 (√3 - 1) / (√3 + 1) |
Поскольку длина высоты треугольника теперь известна, найдем XY по той же теореме синусов.
QY / sin(30) = XY / sin(90)
Примем во внимание табличные значения некоторых тригонометрических функций:
- синус 30 градусов равен sin(30) = 1 / 2
- синус 90 градусов равен sin(90) = 1
тогда
QY = XY sin (30)
3/2 (√3 - 1) / (√3 + 1) = 1/2 XY
XY = 3 (√3 - 1) / (√3 + 1) ≈ 0.8 м
Ответ: 0,8 м или 3 (√3 - 1) / (√3 + 1)
Теорема синусов (часть 2)
Примечание. Это часть урока с задачами по геометрии (раздел теорема синусов). Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме.
Теорию подробно см. в главе "Теорема синусов".
Задача
Сторона АВ треугольника ABC равна 16см. Угол А равен 30 градусам. Угол В равен 105 градусам. Вычислите длину стороны ВС.
Решение.
Согласно теореме синусов, стороны треугольника пропорциональны синусам противолежащих углов:
a / sin α = b / sin β = c / sin γ
Таким образом
BC / sin α = AB / sin γ
Величину угла С найдем, исходя из того, сумма углов треугольника равна 180 градусам.
С = 180 - 30 -105 = 45 градусов.
Откуда:
BC / sin 30° = 16 / sin 45°
BC = 16 sin 30° / sin 45°
Обратившись к таблице тригонометрических функций, находим:
BC = (16 * 1 / 2) / √2/2 = 16 / √2 ≈ 11,3 см
Ответ: 16 / √2
Задача.
В треугольнике ABC угол А = α, угол С = β, ВС = 7см, ВН - высота треугольника.
Найти АН
Решение.
Для решения задачи воспользуемся теоремой синусов. Из нее следует, что:
BC / sin α = AB / sin β
то есть
7 / sin α = AB / sin β
AB = 7 sin β / sin α
Теперь рассмотрим треугольник ABH. По условию задачи BH - высота, значит он является прямоугольным. Угол AHB = 90 градусам.
Тогда угол ABH = 180 - 90 - α. = 90 - α.
Для него будет верно соотношение:
AB / sin 90 = AH / sin (90 - α)
Из таблицы значений тригонометрических функций учтем что sin 90 = 1, тогда
AB = AH / sin (90 - α)
Из формул приведения тригонометрических функций учтем что sin(90 - α) = cos α, тогда
AB = AH / cos α
Подставим значение AB
7 sin β / sin α = AH / cos α
AH sin α = 7 sin β cos α
AH = 7 sin β cos α / sin α
Из тех же тригонометрических тождеств выясним, что cos α / sin α = ctg α, тогда
AH = 7 sin β ctg α
Ответ: 7 sin β ctg α
Теорема косинусов