Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Необх-мый признак сх-сти ряда.Следствие




Теорема: если числовой ряд а1+ а2+…+аn+… (1) сходится, то предел его общ. члена при неогранич. Возрастании номера n-0

Limn→∞ an =0

Док-во: если ряд 1 сходится, то сущ-т предел Limn→∞ Sn(6), что тогда сущ-т также и предел Lim Sn-1=S(7) (т.к. если n→∞,то и n→1 тоже =>8

Вытикая из (6) и (7) имеем:

Limn→∞ Sn - Limn→0 = 0

Limn→∞ (Sn – Sn-1) = 0 ((Sn –Sn-1)=0)=an

(Sn= SN-1 + an)

Limn→∞ an = 0

Знаем, что это признак явл-ся необходимым, но сущ. недостаток, если Limn→∞ an =0 то это не означает, что ряд 1 сходится

 

Частные производные

Опр.Частной производной от ф-ции z=f(x,y) по переменной х, наз.предел отношения частного приращения этой ф-ции к приращению . Обозначим или . ; . Определяем частную производную от переменной у: ; Частной производной ф-ции z=f(x,y) по переменной х наз.обычная производная от ф-ции одной переменной х в кот.приращена ф-ция f(x,y), если предположить, что 2-ая переменная у постоянная. Производная этой ф-ции по у находится в предположении, что х постоянная.

Теоремы о сх-сти рядов

Теорема1: Если сходится ряд, получившийся из данного ряда отбрасыванием нескольких его членов, то сходится и сам данный ряд. Обратно, если сходится данный ряд, то сходится и ряд, получившийся из данного отбрасыванием нескольких членов.

Теорема2: Если ряд сходится и его сумма равна S, то ряд , где с – какое-либо фиксированное число, также сходится и его сумма равна сS.

Теорема3: Если ряды и сходятся и их суммы соответственно равны Sa и Sb, то ряды и тоже сходятся и их суммы соответственно равны Sa+Sb и Sa-Sb.

Полный диф-ал

Пусть дана ф-ция z-х перем-ых z=f(x,y).Ее полное приращ-е по опр-ю Δz= f(x+Δx,y)- f(x,y).Можно показ.,что это приращ-е можно предст. в виде , где (1) Гл.часть полн.приращ-я Δz, линейная относ-но Δx, Δу,полным дифф-лом ф-ии z(x,y).Обозн. dz.
.Диф-лы независ.перем-ых х и у по опред-ю равны их приращ-ям dx=Δx, dy=Δy. Поэтому .При достаточно малых зн-ях Δx,Δy 2-мя послед.слагаемыми в ф-ле(1). Можно принебречь.Тогда .

Числовые ряды.Сх-сть.Сумма ряда

Пусть дана числовая последовательность а1, а2, а3, +.., аn+
Выражение вида а1 + а2 + а3 +++ аn (1) - наз-ся числовым рядом
Числа а1, а2, +, аn - наз-ся членами ряда.
Числовой ряд (1) считается заданным, если извесен общий член ряда как функция an=f (n)

Произ-ная сложной ф-ции 2 перем-х.

Пусть дана ф-ия z= z (u,v),где перем-ые u и v не явл. независ., а тоже явл.ф-ми от 2-х перем-ых х и у: U= U(x,y) V=V(x,y).Т.е. мы имеем сложн. ф-цию: .Найдем произв-ую этой ф-ии по перем-ной х.Дадим перем-ой х приращ-е Δх.Тогда перем-ные U и V получ. приращ-е , .При этом получ. приращ-е полное,опр-мое формулой : . Разделим обе части фор-лы наΔx.Перейдем к пределу при х→0. + Если счит.,что ф-ии U(x,y) и V(x,y) равны, то при Δх→0, ΔU→0 и ΔV→0. Поэтому ,
(2).Аналогично можно найти: .(3)





Поделиться с друзьями:


Дата добавления: 2016-04-03; Мы поможем в написании ваших работ!; просмотров: 336 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Либо вы управляете вашим днем, либо день управляет вами. © Джим Рон
==> читать все изречения...

2299 - | 2031 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.