Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Аналитический расчет трехшарнирной арки




Определение опорных реакций

При действии внешней нагрузки на трехшарнирную арку (рис. 3.3) в каждой ее опоре возникает по две реакции. Всего, таким образом, имеется четыре неизвестные реакции – две вертикальные RA, RB и две горизонтальные НA и НB. Для расчета трехшарнирной арки кроме трех уравнений равновесия, которые дает статика для системы сил, расположенной в одной плоскости, можно составить четвертое уравнение, основанное на том, что сумма моментов всех сил, приложенных по одну сторону от ключевого шарнира С, равна нулю. Действительно, это уравнение для изгибающего момента в поперечном сечении, а в шарнире момент отсутствует.

Для трехшарнирной арки (рис. 3.3) при определении реакций будут записаны следующие уравнения:

S mB = 0, - RAl + P 1(la 1) + P 2 a 2 = 0, (а)

RA = [ P 1(la 1) + P 2 a 2]/ l.

S mA = 0, RBlP 1 a 1 P 2(la 2) = 0, (б)

RB = [ P 1 a 1 + P 2(la 2)]/ l.

Уравнения (а) и (б) для вычисления вертикальных реакций имеют тот же вид, что и уравнения в балочной системе. Для вычисления распора запишем следующие уравнения:

S x = 0, HA HB = 0, HA = HB = H.

S mC пр = 0, RBl 2P 2(l 2a 2) – HBf = 0, (в)

HB = H = [ RBl 2P 2(l 2a 2)]/ f, или:

(3.1)

В выражении (3.1) МС бал представляет собой изгибающий момент в сечении С в балке, перекрывающей тот же пролет и воспринимающей заданную на трехшарнирную арку вертикальную нагрузку (рис. 3.3). Из формулы (3.1) следует, что величина распора Н обратно пропорциональна стреле подъема арки f.

 

Определение внутренних усилий в арке

от вертикальной нагрузки

При действии на арку только вертикальных нагрузок (рис. 3.4, а) изгибающий момент в сечении с абсциссой х равен:

Mx = RAxP 1(x - a 1) – P 2(x - a 2) – Hy,

или:

Мx = Mx бал - Hy, (3.2)

где Мх бал — изгибающий момент в балке (рис. 3.4, б) от той же нагрузки в сечении с абсциссой х (так называемый балочный момент). Формулой (3.2) удобно пользоваться при построении эпюры моментов в арке. Значения Мх бал непосредственно берут из эпюры моментов, построенной для балки. Величину распора находят по формуле (3.1).

Полученная формула для Мх наглядно показывает уменьшение изгибающего момента в арке по сравнению с балкой, что подтверждает экономичность арочной конструкции по сравнению с балочной. Это видно из построений на рис. 3.4, г, где показано совмещение балочной эпюры моментов и кривой, соответствующей слагаемому Н∙у в формуле (3.1). На рис. 3.4, д показан вид эпюры моментов Мх в арке.

Аналогичные формулы можно получить для поперечной Qx и продольной Nx сил. Для этого спроецируем все приложенные слева от сечения nn силы (рис. 3. 4, в) сначала на нормаль к оси арки в сечении с абсциссой х, а затем на касательную к ней:

 

Qx = (RA P 1 P 2)cosj x H sinj x,

Nx = + (RA P 1 P 2)sinj x + H cosj x.

Нетрудно убедиться, что величина, стоящая в круглых скобках в записанных выше выражениях, представляет собой величину поперечной силы в балке в сечении с той же абсциссой х; тогда эти формулы примут вид:

Qx = Qx бал cosj x - Н sinj x, (3.3)

Nx = Qx бал sinj x + H cosj x. (3.4)

Отметим, что в арке принято считать N > 0 при сжатии.

Рациональная ось арки

Из формулы (3.2) следует, что в том случае, когда очертание оси арки совпадает с очертаниями балочной эпюры моментов М бал, называемой кривой давления, т. е. если

(3.5)

то в такой арке изгибающий момент Мх = 0.

Уравнение (3.5) называют уравнением рациональной оси арки. На рис. 3. 5, в приведены очертания арок с рациональной осью для различных случаев нагружения.

Пример 3.1 Для заданной трехшарнирной арки с размерами, показанными на рис. 3. 6, вычислить значения внутренних усилий в сечениях m и n. Построить эпюры внутренних усилий. Уравнение оси арки – квадратная парабола с началом координат в точке А:

, где l = 12 м, f = 4 м.

Решение.

1. Определяем опорные реакции:

S mA = q 6×3 + P∙ 9 – RB 12 = 0. RB = 6 кН.

S mB = q 6×9 + P∙ 3 – RA 12 = 0. RA = 10 кН.

H = MC бал/ f = (RB 6 – P∙ 3)/4 = 6 кН.

2. Строим эпюры Qх бал и Мх бал.

3. По формуле (3.2) вычисляем значения Мх, получив предварительно ординаты заданных сечений m и n:

4. Вычисляем Qm и Qn, используя формулу (3.3)

Qm=Qm балcosj m - H sinj m

Для вычисления тригонометрических функций воспользуемся следующими математическими соотношениями:

;

,

тогда

 

 

, ,

, .

Аналогично:

sinj n = - 0,555, cosj n = 0,832.

Подсчитаем значения Q в заданных сечениях:

Qm = Qm балcosj m - H sinj m = 4×0,832 – 6×0,555 = 0.

В сечении n эпюра Q бал имеет разрыв, аналогично будет разрыв и в эпюре поперечных сил арки. Поэтому необходимо подсчитать поперечную силу слева и справа от сечения:

 

Одновременно найдем поперечные силы в опорных сечениях А и В.

QA = 10×0,6 – 6×0,8 = 1,2 кН; QB = -6×0,6–6(-0,8) = 1,2 кН.

QC = - 2×1 = - 2 кН.

 

5. Вычисляем продольные усилия по формуле (3.4):

Nm = Qm балsinj m + H cosj m = 4×0,555 + 6×0,832 = 7,218 кН,

Nn л = (-2)×(- 0,555) + 6×0,832 = 6,108 кН,

Nn пр = (- 6)×(- 0,555) + 6×0,832 = 8,328кН,

 

В опорных сечениях:

NA = 10×0,8 + 6×0,6 = 11,6 кН,

NВ = (-6)×(-0,8) + 6×0,6 = 8,4 кН.

Таблица 1.

№ сеч. х (м) y (м) tg φ sinφ cosφ M б Н М Q б Q б∙ cosφ H ∙ sinφ Q Q б∙ sinφ Hcos φ N
                               
A     1.333 0.8 0.6           4.8 1.2   3.6 11.6
m     0.667 0.555 0.83         3.33 3.33   2.22 4.99 7.22
C                 -2 -2   -2      
n (л)     -0.667 -0.555 0.83       -2 -1.66 -3.33 1.66 -1.11 4.99 6.11
n( пр)     -0.667 -0.555 0.83       -6 -4.99 -3.33 -1.69 -3.33 4.99 8.33
B     -1.333 -0.8 0.6       -6 -3.6 -4.8 1.2 4.8 3.6 8.4

 

6. Сводим полученные значения в таблицу 1 и строим эпюры внутренних усилий в арке (рис. 3. 6).

Пример 3.2

Для заданной трехшарнирной рамы с размерами и нагрузкой, показанными на рис. 3. 7, а, построить эпюры внутренних усилий.

 

Решение.

1. Определяем опорные реакции:

S mA = - q 12×18 - P∙ 3 + RB 24 = 0. RВ = 10,25 кН.

S mB = q 12×6 + P∙ 21 – RA 24 = 0. RА = 11,75 кН.

H = MC бал/ f = (RА ∙12 – P∙ 9)/6 = 8.5 кН.

2. Строим эпюры Qх бал и Мх бал (рис. 3. 7, б).

3. По формулам (3.2), (3.3), (3.4) вычисляем значения внутренних усилий, используя табличную форму.

(3.2)

Qk=Qk балcosj k - H sinj k (3.3)

Nk = Qk балsinj k + H cosj k (3.4)

 

В таблицу 2 заносим опорные точки А и В, точки приложения сосредоточенной силы, начала и конца распределенной нагрузки и узлы рамы m и n. В точках приложения сосредоточенных сил в узлах необходимо находить по два усилия (слева и справа от сечения), поскольку в точках приложения сосредоточенных сил скачкообразно меняется поперечная сила, а в узлах слева и справа различный угол наклона поперечного сечения.

 

   
 

Таблица 2.

№ сеч. х (м) y (м) sin φ cos φ M б Н М Q б Q б cosφ H sinφ Q Q б sinφ H cos φ N
                             
A     0.707 0.707   8.5   11.75 8.31 6.01 2.3 8.31 6.01 14.32
k( л )     0.707 0.707 31.25 8.5 5.7 11.75 8.31 6.01 2.3 8.31 6.01 14.32
k( пр )     0.707 0.707 31.25 8.5 5.7 1.75 1.24 6.01 -4.77 1.24 6.01 7.25
n( л )     0.707 0.707 40.5 8.5 -10.5 1.75 1.75 6.01 -4.77 1.24 6.01 7.25
n( пр )         40.5 8.5 -10.5 1.75 1.75   1.75   8.5 8.5
C           8.5   1.75 1.75   1.75   8.5 8.5
m (л)         46.5 8.5 -4.5 -4.25 -4.25 -3.33 -0.92   8.5 8.5
m( пр)     -0.707 0.707 46.5 8.5 -4.5 -4.25 -3.0 -6.01 3.01 3.0 6.01 9.01
B     -0.707 0.707   8.5   -10.2 -7.25 -6.01 -1.24 7.25 6.01 13.3

Используя данные 8, 12 и 15 столбцов таблицы 2 строим эпюры внутренних усилий в трехшарнирной раме (рис. 3.8).

 

 





Поделиться с друзьями:


Дата добавления: 2016-03-28; Мы поможем в написании ваших работ!; просмотров: 3220 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2187 - | 2152 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.