Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Статически определимые фермы




 

Фермой называется стержневая система, остающаяся геометрически неизменяемой после условной замены ее жестких узлов шарнирными. При этом нагрузка к ферме прилагается в узлах, а в стержнях возникают только продольные усилия N.

Ферма, как правило, состоит из нескольких однотипных элементов ¾ панелей, при этом стержни фермы имеют свои названия (рис. 2.1):

Фермы классифицируются по следующим признакам:

 

1.1. По типу решетки:

 

1.2. По очертанию:

 

1.3. По типу опирания: балочные, консольные, консольно-балочные;

1.4. По назначению: стропильные, башенные, крановые, мостовые с ездой понизу и поверху, и др.

 

Расчет простейших ферм на неподвижную нагрузку

Фермы, образованные из шарнирных треугольников последовательным присоединением узлов, называются простейшими. Они статически определимы и геометрически неизменяемы.

В задачах расчета статически определимых ферм в полной мере приходится использовать уравнения равновесия как сходящейся системы сил (при рассмотрении равновесия узла), так и произвольной системы сил. Необходимо отметить, что все методы определения усилий в стержнях фермы реализуют основной метод механики деформируемого твердого тела - метод сечений. Принято различать три основных способа определения усилий в стержнях ферм:

1) метод моментной точки используется, когда в поперечном сечении оказывается не более трех неизвестных усилий в стержнях; при этом два из них пересекаются в точке, положение которой легко определить. В сумму моментов всех сил, приложенных к рассматриваемой части фермы относительно этой точки, которая называется моментной, войдет только одно неизвестное, которое из этого уравнения и будет найдено;

2) метод проекций. В этом случае записывают сумму проекций всех сил, приложенных к рассматриваемой части фермы на ось х или у или другую произвольно ориентированную ось. Ось проекции выбирается так, чтобы в уравнение равновесия входило одно неизвестное усилие;

3) метод вырезания узлов применяется для определения усилий, когда в узле сходится не более двух стержней с неизвестными усилиями.

Пример 2. 1. Определить нулевые стержни заданной консольной фермы (рис. 2.2).

Решение. Вырежем узел 9 и рассмотрим его равновесие (рис. 2.3). Узел не нагружен, и в нем сходятся два стержня.

Из уравнения равновесия

S y = 0 получим:

N 97sina = 0, откуда N 97 = 0.

Запишем второе уравнение равновесия:

S x = 0, - N 97cosa - N 98 = 0, тогда N 98 = 0.

Таким образом, оба усилия, сходящиеся в двухстержневом ненагруженном узле, нулевые.

Рассмотрим равновесие 8-го узла (рис. 2.4). Это так называемый трехстержневой узел с единственно выходящим стержнем. Им является стержень 8–7. Записав сумму проекций S y = 0, нетрудно убедиться, что стержень 8–7 — нулевой, а из уравнения S х = 0 следует, что N 98 = N 86.

Мысленно вырежем узел 7. С учетом того, что стержень 7–8 нулевой, 7-й узел можно рассматривать как трехстержневой с единственно выходящим стержнем 7–6, который тоже будет нулевым. Остальные узлы либо нагружены, либо не могут рассматриваться как трехстержневые, и в остальных стержнях решетки будут возникать продольные усилия.

Пример 2. 2 Вычислить усилия в отмеченных стержнях фермы (рис. 2.5).

Наметим путь решения задачи. Усилие в стержне 3–4 удобно искать, рассмотрев равновесие узла 3; усилие в стержне 5–6 проще найти методом вырезания узла 6, а усилие в раскосе 4–5 удобнее находить, используя метод проекций. Для этого необходимо найти реакции опор и провести сечение I–I.

S m 1 = 0. P∙ 6– R пр 12 = 0, R пр = R л = Р /2.

Для определения усилия в стержне 3–5 можно воспользоваться методом моментной точки, которая находится в месте пересечения двух других усилий, оказавшихся в сечении I–I. Моментной точкой для N 35 служит узел 4 (рис. 2.5, б).

Дальнейшее решение задачи предлагается провести студентам самостоятельно. Вырезав узел 3, получим N 34 = 0; вырезав узел 6, нетрудно убедиться, что стойка 5–6 сжата усилием P (N 56 = - Р), а спроектировав все силы, приложенные к левой или правой частям фермы на вертикальную ось, получим усилие в раскосе N 54 = R л/cosa = 0,5 P /0,8 = = 0,625 P. Записав уравнение моментов для левой части фермы относительно узла 4, найдем N 35 = R л3/4 = 0,375 Р.

Пример 2. 3. Определить усилия в стержнях третьей панели заданной фермы (рис. 2.6, а). При расчетах принять:

d = 3,6 м, h = 3 м, h 1 = 0,4 h = 1,2 м и Р = 80 кН.

 

Решение. Итак, нам необходимо определить усилия в пяти стержнях фермы: в стержнях верхнего и нижнего пояса 5–7 и 4–6, в раскосе 4–7, в левой 4–5 и правой 6–7 стойках третьей панели.

Предварительно вычислим ряд геометрических параметров заданной фермы, обозначив размер h - h 1 = h 2.

cosa = d / l 57 = 3,6/3,71 = 0,97, sina = (h 2/2)/ l 57 = 0,9/3,71 = 0,242;

tga = 0,9/3,6 = 0,25; с = h 1/tga = 1,2/0,25 = 4,8 м;

cosb = d / l 47 = 3,6/4,17 = 0,863;

sinb = (h 1 + h 2/2)/ l 47 = 2,1/4,17 = 0,504.

 

1. Определяем опорные реакции.

S mA = 0. - P∙d - P∙ 2 d - P∙ 3 d - P∙ 4 d + RВ 4 d = 0; RВ = 200 кН.

В силу симметрии RА = RВ = 200 кН.

2. Для определения усилий в стержнях 4-6, 4-7 и 5-7 разрежем третью панель сечением I-I и рассмотрим равновесие одной из частей фермы под действием внешних и внутренних сил (рис. 2.6, б). Рассматривая правую часть фермы, видим, что для определения N 46 удобно записать уравнение моментов относительно моментной точки 7 (узла 7), в которой пересекаются два других неизвестных усилия N 47 и N 57.

S m 7=0. - P∙d + Rb∙d - N 46(h 1+ h 2/2) = 0.

N 46 = (- 80×3,6 + 200×3,6)/2,1 = 206 кН.

Усилие N 46 направлено на чертеже от узла и получилось положительным, следовательно, стержень 4-6 растянут.

Для определения усилия N 57 также удобно использовать метод моментной точки (узел 4). Рассмотрим равновесие левой части фермы.

S m 4 = 0. – Rа 2 d + P∙ 2 d + P∙d - (N 57cosa) h = 0.

N 57 = (- 200 7,2 + 80 7,2 + 80 3,6)/(0,97×3) = - 198 кН.

 

Знак «-» у усилия N 57 говорит, что стержень 5-7 сжат.

Усилие N 47 можно найти либо методом проекций на ось у всех сил, приложенных к одной из частей фермы, либо методом моментной точки. В данном случае это будет точка m, лежащая справа от опоры В (рис. 2.6). Воспользуемся методом проекций, рассмотрев равновесие левой части фермы (рис. 2.6, б).

S y = 0. RА - P - P - P - N 57sina + N 47sinb = 0.

N 47 = [- 200 + 80 + 80 + 80 + (- 198) 0,242]/0,504 = - 15,7 кН

(стержень сжат).

Для вычисления усилия в стержне 6-7 проведем сечение II-II (рис. 3.32, а) и рассмотрим равновесие правой части фермы (рис. 2.7). Воспользуемся методом моментной точки: для усилия N 67 моментной точкой будет точка m, в которой пересекаются два других усилия N 46 и N 78.

S mm = 0, - N 67(d + c) + Pc - Rbc = 0.

N 67 = (80 4,8 - 200 4,8)/8,4 = - 69 кН,

(стержень 6-7 сжат).

В стойке 5-6 усилие будем определять методом вырезания узлов, вырезав узел 5 (рис. 2.8). Спроецируем все усилия, сходящиеся в узле, на ось у. В силу симметрии фермы и внешней нагрузки усилие в стержне 3-5 примем равным усилию в стержне 5-7.

S y = 0. - P - N 45 - N 57sina - N 35sina = 0;

N 45 = - 80 -2(-198) 0,242 = 15,8 кН, cтойка 4 - 5 растянута.

Для проверки полученных усилий можно записать уравнение проекций всех сил, приложенных к левой или правой частям фермы (рис. 2.6, б) на ось х.

S x = 0. N 57cosa + N 47cosb + N 46 = 0;

(- 198) 0,97 + (-15,7) 0,863 + 206 = - 205,6 + 206 = 0.

Погрешность d, полученная в результате проверки, равна:

d = (206 - 205,6) 100%/205,6 = 0,2%,

при допустимой (разрешенной) для данного типа задач 3-5%.





Поделиться с друзьями:


Дата добавления: 2016-03-28; Мы поможем в написании ваших работ!; просмотров: 1749 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2210 - | 2136 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.