, . :
∆rS0298 = Σ vi S0298 i ( ) - Σ vj S0298 j ( ),
, v 1 1 + v 2 2 = v 3 3 + v 4 4;
∆rS0298 = [ v 3S0298(3) + v 4 S0298(4) ] - [ v 1S0298(1) + v 2S0298(2) ]
,
2() + ½ 2() = 2(); ∆rS0298
∆rS0298 = S0298 - (S0298 + ½ S0298 ) = 69,95 130,52 ½ 205,04 = - 163,14 /*
(S0298 >0), (∆rS) , .
.
≠ 298 .
∆rS0() = ∆rS0298 + dT (1.55)
, ∆() ≠ f(T), :
∆rS0() = ∆rS0298 + ∆ * ln (1.56)
, :
∆0 = ∆ + ∆ *
(1.55) :
∆rS0() = ∆rS0298 + dT = ∆rS0298 + ∆ * ln + ∆ ( - 298) (1.57)
- . , , - (, = const) , . (1.50) = const = const
δ' ≤ - d (U + pv - TS) , (1.58)
δ' ≤ - d ( - TS) (1.59)
G = H TS (1.60)
G - . , = const .
δ' = d' max = - (dG) , (1.61)
' max = - (G2 G1) = - (ΔG) , (1.62)
() () (' max) .
(1.60) = G + T * S, , - . G. * S , .. , . (1.60).
dG = dU + pdv + vdP TdS SdT (1.63)
(1.52), dS ≥ dU + dV
dU ≤ dS dV (1.64)
(1.63) dU dS dV :
dG ≤ - S * d + Vd (1.65)
- (, = const, dp = dT = 0) (1.65) (dG), ≤ 0,
(ΔG), ≤ 0 G → Gmin (1.66)
, - :
1. ΔG = 0 (G → Gmin, ), ;
2. ΔG < 0 (G → Gmin, ), ;
3. ΔG > 0, .
(1.65) ,
dG = SdT + VdP (1.67)
(1.67)
(1.68)
(1.69)
(1.68) , , , . , , . (1.69) (1.60),
G = H + T , ( ) 1 2
∆rG0() = ∆r0() + , (1.70)
= ∆rS0()
(1.70) -, .
∆rG0 = ∆r0 - ∆rS0 (1.71)
(1.71) , ∆rG0 : - ∆r0 ∆rS0 . , = const.
, , (∆r0 < 0), , , , .. (∆rS0 > 0).
, ∆r0 = 0, . , , ∆rS0 = 0, .
.
∆r0 = ∆rS0 (1.72)
( = 101,3 , = 298 ) ∆rG0298 = ∆r0298 - ∆rS0298 * 298;
∆rG0298 - ∆fG0298;
∆rG0298 = (1.73)
∆fG0298 , , .
∆fG0298 - ,
∆fG0298 = ∆f0298 298 ∆fS0298; (1.74)
∆f0298 ∆fS0298 , , .