Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Перпендикуляр к стороне угла




Для любого угла, образованного пересечением прямых ОА ¥ и ОВ ¥ (рис. 12), на любой из его сторон (например, на стороне ОА ¥) существует такая точка М, что перпендикуляр, восстановленный к ОА ¥ из точки М, будет параллелен второй стороне угла OB ¥ (рис. 12): MB ¥^ OA ¥, и MB ¥|| OB ¥. При этом всякий перпендикуляр, выходящий из точки М ’Î ОМ, пересекает противоположную сторону угла ОВ ¥, а всякий перпендикуляр, восстановленный из точки MMA ¥, не имеет общих точек со стороной OB ¥.

Четвертый признак конгруэнтности треугольников

В абсолютной геометрии без привлечения аксиомы параллельности доказываются три признака конгруэнтности треугольников. В планиметрии Лобачевского справедлив еще один, четвертый признак. Если три угла одного треугольника конгруэнтны соответствующим трем углам второго треугольника, то эти треугольники конгруэнтны [7].

Вывод 2

Рассмотренные выше неевклидовы отношения 1–4 между прямыми на плоскости Лобачевского являются логическим следствием 15 аксиом планиметрии Лобачевского и реализуются в модели Пуанкаре L 2.

О роли открытия неевклидовой геометрии

Открытие мыслимой неевклидовой геометрии задолго до построения ее реализаций и последовавшие затем открытия ее реализаций Гауссом, Клейном, Бельтрами и Пуанкаре явились прологом пересмотра многих устоявшихся фундаментальных понятий в теории познания. Вначале подверглись анализу идеи и методы доказательства в классической математике и математической логике. Это привело к рождению теории множеств и развитию дедуктивного формализма в математике на новом структурном уровне. Новые геометрические идеи математического формализма подняли научный уровень теоретической физики, а затем и всего естествознания.

В современной науке понятие реализации или модели некоторой системы аксиом используется для проверки основных требований, предъявляемых к аксиоматическому методу в моделировании вообще и в математическом моделировании в частности.

Вывод 3

Открытие и построение неевклидовой геометрии предшествовало, а затем и сопутствовало развитию современного математического формализма. Роль математического формализма в современной науке не сводится только к формированию математического аппарата. Многие законы, открытые в теории математического формализма, т.е. в математических языках, моделируют интеллектуальную деятельность вообще и исследовательскую деятельность в частности.

Формирование математических текстов на основе дедуктивного метода, т.е. построение теории на базе системы аксиом, должно удовлетворять некоторым законам – свойствам аксиоматических систем. К изучению этих законов мы приступаем в следующей главе.


Лучший метод для предвидения будущего развития математических наук заключается в изучении истории и нынешнего состояния этих наук

Анри Пуанкаре

ГЛАВА II





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 734 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

2217 - | 2173 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.