Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Арифметическая модель векторного пространства




Выражения вида a +b +…+g называются линейными комбинациями векторов с действительными числами.

Теорема размерности

1. Пусть вектор параллелен вектору 1, тогда существует x Î R такое, что = x 1.

2. Пусть векторы лежат в плоскости П и 1 не параллелен 2. Тогда всякий вектор Î П есть линейная комбинация векторов 1 и 2:

= х 1 + у 2.

3. Пусть векторы 1, 2 и 3 не лежат в одной плоскости. Тогда всякий вектор есть их линейная комбинация:

= x 1 + y 2 + z 3

Доказательство проведем только для случая 2.

Выберем произвольную точку О на плоскости П и отложим из нее векторы 1, 2 и . На направления О 1 и О 2 отложим направленные проекции вектора (рис. 6), обозначив их, соответственно, х 2 и у 2. Тогда получим требуемое равенство = х 1 + у 2. Случай 2 доказан. Случай 1 – тривиален, а случай 3 доказывается аналогично с построением параллелепипеда.

Будем говорить, что векторы 1 и 2 на рис. 6 образуют векторный базис на плоскости векторов, а числа х и у назовем координатами вектора в этом базисе. Аналогично можно определить базис на прямой и в пространстве, используя случаи 1 и 3 рассмотренной теоремы.

Таким образом, каждый вектор имеет свои координаты в заданном базисе и, наоборот, всякая тройка чисел (x,y,z) (в заданном порядке) определяет единственный вектор в этом базисе.

Вывод 1

Если в пространстве задан базис { 1, 2, 3}, то между множеством векторов и упорядоченными тройками чисел (x,y,z) установлено взаимно однозначное соответствие

↔(x,y,z), (1)

определяемое разложением вектора в заданном базисе: .

Чтобы объявить множество упорядоченных троек чисел арифметической или координатной моделью трехмерного векторного пространства, покажем, что операции сложения векторов и умножения на число определены в координатной форме и, что координаты вектора определяют его длину и направление.

Для удобства будем считать, что , , – известный в элементарной геометрии базис, состоящий из единичных взаимно перпендикулярных векторов. Для простоты также ограничимся случаем плоскости.

Пусть , . Тогда и элементы геометрической модели и для них определена сумма

.

Учитываем, что , , и также элементы геометрической модели и, используя свойства 1–4 сложения и свойства 1–4 умножения, получаем

Согласно соответствию (1), установленному выше, заключаем, что – координаты вектора . Аналогично показывается, что вектор имеет координаты .

Используя теорему Пифагора, находим длину вектора на плоскости

и в пространстве

.

Наконец, для противоположного вектора находим координаты: .

Вывод 2

Координаты вектора определяют его длину и направление. В координатной форме определены операции сложения векторов и умножение векторов на число. Доказательство этих фактов требует в точности восемь свойств сложения и умножения, доказанных в геометрической модели. Поэтому эти восемь свойств называют аксиомами модели векторного пространства.

Мы завершили решение сформулированной в начале параграфа задачи А. Вот это решение

На множестве направленных отрезков система восьми свойств операции сложения направленных отрезков и умножения на число определяет арифметическую модель векторного пространства.

Попутно мы устанавливаем следующее свойство.

Вывод 3

Между элементами геометрической модели векторного пространства и элементами арифметической модели векторного пространства существует взаимно однозначное соответствие (1), обозначим его

, . (2)

Это соответствие сохраняет результат линейных операций сложения векторов и умножения на число

(3)

и называется изоморфизмом арифметической и геометрической моделей векторного пространства.





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 1003 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2230 - | 2116 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.