(11.32)
, (/, )
(11.33) 222
, (/, ) (11.33) , (11.31) t - . / % () 2 130].
. . 11.4 , , , . , , (. . 11.5, 11.6) Q () . , .
. 11.5
(11.33) (11.19). (. 11.8).
: -
U () cos (i £>0t ),
, . . (t) s= wc (t.
tpo).
. 11. 8.
(t) In / IQ, (01. / = (11. 35) :
(11. 36)
Q () . 11. 5.
, . , , (t, 0) . (. 11.9).
(), 1 /0 (<2) <3 (t) .
(0 / /. - (. 11.10). () , . (0 . 11. 9. -
( ) . 11.9, 11.10 .
|
|
. 11.5, 11.8 11.10 ( ) . <2 (/) . . 11.811.10 . 11.6.
11.3.
. . . 11.11,.
(t) It, X ()] (). X (t) , , : It, X (t)\
X (t) cos [ t | , U n cos I 0)/
X (t) 0] . , , X (t) (, , ), . X (t) , . . , (t) = X (t) + (t).
() (. 11.11, ) ( )
X {t) -
. (t, X)
X (X), , (). , (t, X) = = k (t) X (t), k (t) = cos (/
0) - - i (t) X (t) -j- (t) -
, .
uc(t, ) = (X) ( : , ), I , . . 11.11, - ().
-| -' -| ,
'., (), ( ) (f). ( ) .
[12].
1. . , (. 11.11, )
X (/) /=7\ () ,/. X (. 11.2), .
At X () 0, t, == iAt (. 11.11, ) Xi = \, Xj == (X (iAt)], (t) | = lxlt Xt = (iAt)]. X (t) 0, / ' Xt, (t). 11.1, 11.2. -
|
|
. lohS
Xt = [,,...
,] (, , ) ;
p(Xi) = p(Xi/\i) = p(Xl,.... ,/*,,...
-., xi) = kip(Xt)p (X i/Xi) =
= kp(Xl)L(Xl). (11.37)
. . , (11.37)
, , (11.38),
(11.39)
, ti, ti+l (11.38), (11.39).
. . . (/) 19591960 . (11.38), At *■ 0 -
. 11.12
W {X, t) - lim W (X,, tt).
( ).
, X (, . . . .
(11.39) Xj+], Xt . / >- 0 () -
X (t) =
lim =- -
( ) , . 11.12. (). W (X, t). X (0 . (0 (0, , .
( ) , X (t)
(0, . (11.37), (11.38) . , , .
, (11.38). , . . 1301 , , , .
2. . X (0 0, . . - l.VM, . , . , , , X (0- [301:
|
|
(11.40)
= [ ar.....ah\ - - .
ifr(0 # (, ) = < X (0 X (t + )>. X (0, , 0 < / < , -
. . . (/) = =(, ), / £ , . () ,
= [ , ].
, :
X(t) = limX (t), X (t) = (t. ) =
(11.40)
. , t . (11.40) . ( ) . , .
, , .
. , . . , , - (/), (t) . . 1301 , (t) , um (t) N .
, .
((+,/;), :
P (h) = p(K...... +.....,-) =
= (]) (+./- (.41)
(. 11.2) (11.37)
(11.42)
,
,f [(/)| = \ (/)/ (t)\
(11.43)
(11.41), (11.42) (11.37), :
(+1) - ,+, (ki) (*.(+,/*.,) /. X X (a,<+,)/Z. (,). -
(11.38), :
Cj +, -
(11.44) ; () , ,+1
(t -\- At) (/ 4- ) At <-0. (,/) , - I30J;
. = const, :
X (/) dki. (11.44) ( ):
|
|
(11.43)
(, t 0) = ,.\ (0)1 / = 0.
(11.47), - (11.45), (). W (, t), ( ). ( ) , .
(-47) . 11.12.
, '
(11.46), X () [30].
. 11.1 . , .
. :
(11.49)
0 (/)
X (t)
. 11.12, '{ (t) = D (t) .
(11.49) (11.47) <> = d(|i)<H , t) ^ _ dk*
b(l, t) 0 _
= ■--- > 2. -
k(t), D (t):
(11.50)
. 11.13
' (, t) d (X, t)/dk , (19.43)
-
uc\t, (:)] X (/).
(11.50) . 11.13. .
, 113) (), (11.51) ()- . 11.14. (/) = I/, X (01 + (t). :
11.1
(/) | . | (., | ||
. 11.14
()
X ().
, (), (0> (11.52). . 11.15. (11.53).
. () (11.50) (t) X {t), D () X (t). *, . 11.16. (X), (): (. . 11.1, 2) X (t) . (Ԅ) (11.50 ) (t) -
X (i), D (t)
D (t). ! 0 ), (. . 11.16).
(11.53) . . 11.2 . ; , 0 : X (), . . , . 11.1.
, . 15.
|
|
! . () = |, X ()] + ) . X(t) < ; < X (/) > = 0 R%. (t, 1 = < X (t) X () >, ; (11. 37) bi - : (11.42). (11.37), (11.38) (11. ; ]
^-
+1 . t\t -*■ 0
11.2
:
(11.54)
z (t), (t) - (11.51), (11.52), (/, )