Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Метод совмещения плоскостей




Этот метод является частным случаем метода вращения вокруг линии уровня. В качестве оси вращения выбирается линия пересече­ния плоскости, в которой лежит та или иная фигура, с одной из плос­костей проекций. Иначе говоря, осью вращения служит горизонталь­ный или фронтальный след плоскости. При этом каждая точка, при­надлежащая рассматриваемой фигуре, при вращении перемещается в плоскости, перпендикулярной к следу той плоскости, в которой она лежит. Например, плоскость , заданную своими следами и , не­обходимо совместить с горизонтальной плоскостью проекций П1 (рис. 9.7).

 

Для решения поставленной задачи берут на фронтальном следе плоскости произвольную точку 12 и находят ее горизонтальную проекцию 1, которая лежит на оси х. Далее из точки 11проводят луч, перпендикулярный к горизонтальному следу плоскости (любая точка при вращении должна перемещаться в плоскости, перпендику­лярной к оси поворота). На нем находят совмещенное положение точ­ки 1 — точку 10, как точку пересечения луча с дугой окружности радиусом . Точка 10 принадлежит одновременно и плоскости П1 и новому (совмещенному) положению плоскости . Через точку 10 проводят новый фронтальный след 0 плоскости . Следы 1 и 0 ха­рактеризуют новое (совмещенное) положение плоскости .

9.6. Вопросы для самопроверки

1. В чем состоит сущность преобразования ортогональных проек­ций способом замены плоскостей проекций?

2. Сколько замен плоскостей проекций и в какой последователь­ности необходимо выполнить, чтобы перевести отрезок прямой обще­го положения в отрезок прямой частного положения?

 

3. Сколько замен плоскостей проекций и в какой последователь­ности необходимо выполнить, чтобы определить натуральную вели­чину плоской фигуры?

4. В чем заключается способ вращения вокруг проецирующейоси?

5. В каких плоскостях перемещается точка, вращаемая вокруг оси, перпендикулярной к плоскостям П1 и П2?

6. Сущность способа плоскопараллельного перемещения.

7. Что представляет собой преобразование чертежа способом вра­щения вокруг линии уровня?

8. В чем заключается преобразование чертежа способом совмеще­ния?

9.7. Примеры решения задач

Ниже приведены решения одной и той же задачи вышеописанны­ми методами.

9.7.1 Задание: определить натуральную величину треугольника общего положения ABC, заданного проекциями вершин A1 B1 C1 и А2В2С2 (рис. 9.8), а также угол наклона плоскости треугольника к П1.

1) Решение методом замены плоскостей проекций (рис. 9.9).

Плоскость треугольника спроецируется в натуральную величину в том случае, если она будет в пространстве параллельна одной из плоскостей проекций. Одним преобразованием задачу решить невоз­можно. Она решается в два этапа: при первой замене плоскостей про­екций получают плоскость треугольника ABC, перпендикулярную к новой плоскости проекций, при второй замене - получают плоскость треугольника, параллельную новой плоскости проекций.

Первый этап. Одним из условий перпендикулярности двух плос­костей является наличие прямой, принадлежащей одной из плоско­стей, перпендикулярной к другой плоскости. Используя этот признак, проводят через точку А в плоскости треугольника горизонталь (h). За­тем на произвольном расстоянии от горизонтальной проекции тре­угольника A1B1C1 проводят ось x1новой системы плоскостей проек­ций П1 4 перпендикулярно к горизонтальной проекции горизонта­ли h1. В новой системе треугольник ABC стал перпендикулярен к но­вой плоскости проекций П4.

На линиях проекционной связи в новой системе откладывают ко­ординаты z точек А, В, С с фронтальной проекции исходной системы плоскостей П12. При соединении новых проекций А4, B 4, С4 полу­чают прямую линию, в которую спроецировалась плоскость тре­угольника ABC. На этом этапе определяется угол наклона плоскости треугольника к горизонтальной плоскости проекции П1 - угол . На чертеже это угол между осью x1 и проекцией С4А4В4.

Второй этап. Выбираем новую плоскость проекции П5, парал­лельную плоскости треугольника, т.е. новую ось x2 проводят парал­лельно С4А4В4 на произвольном расстоянии. Получают новую систе­му П45. Полученный треугольник А5В5С5 и есть искомая натураль­ная величина треугольника ABC.

2) Решение методом вращения вокруг проецирующей оси

(рис. 9.10).

Задача решается в два этапа. На первом этапе выполняют враще­ние так, чтобы плоскость треугольника ABC преобразовалась в проецирующую плоскость, т.е. стала перпендикулярна к одной из плос­костей проекций. Для этого на фронтальной проекции чертежа прово­дят горизонталь h2 через точку А2. Затем строят горизонтальную про­екцию h1 горизонтали h через точки A1 и 11 Через точку 1 проводят ось i - ось вращения треугольника так, чтобы она была перпендику­лярна к П1. На фронтальной проекции через вершины А2 и В2 прово­дят горизонтальные плоскости уровня 2 и 2. Вершина С принадле­жит плоскости П1 поэтому ее плоскостью вращения будет плоскость проекций П1. На горизонтальной проекции, взяв за центр вращения проекцию i1 поворачивают горизонталь А так, чтобы на плоскость П2 она спроецировалась в точку. На чертеже это выразится тем, что h'1 займет новое положение - перпендикулярно к оси х. При этом на фронтальной проекции точка А2 перемещается по следу плоскости 2 до пересечения с линией связи, проведенной через точку a'1. На гори­зонтальной проекции поворачиваем оставшиеся вершины В и С во­круг оси так, чтобы . На фронтальной проекции вершина В перемещается по следу плоскости 2, а вершина С - по оси х. Соединив новое положение всех вершин треугольника ABC, получают проекцию А'2В'2С'2, сливающуюся в линию. Этим достига­ют проецирующего положения треугольника ABC. На данном этапе, при необходимости, находят угол наклона плоскости треугольника ABC к П1 - .

На втором этапе проводят ось i`через вершину С так, чтобы ось была фронтально проецирующая. При этом С'2 = /'2, а горизонтальная проекция i'1 пройдет через проекцию С'1. Вокруг оси поворачивают треугольник так, чтобы он стал параллелен горизонтальной плоскости проекций. В данной задаче вращают точки А'2 и В'1, вокруг i`2 = С'2 до совмещения с осью х, при этом горизонтальные проекции B'1 и A'1 будут перемещаться в горизонтально проецирующихся плоскостях уровня и P1 и займут новое положение В"1, и А"1 вершина С оста­нется на месте. Соединив новые точки между собой, получают тре­угольник ABC в натуральную величину.

 

3) Решение методом плоскопараллельного перемещения (рис. 9.11).

Задача решается в два этапа. На первом этапе преобразовывают чертеж так, чтобы плоскость треугольника ABC стала перпендику­лярна к одной из плоскостей проекций, т.е. должна в себе содержать прямую, перпендикулярную к этой плоскости. Для этого проводят в

плоскости треугольника горизонталь h (фронтальная проекция А212 // х, а горизонтальная — A111). Каждую вершину треугольника заключают в свою плоскость уровня, параллельную плоскости П1. В рассматриваемом примере вершина С принадлежит плоскости проек­ций П1, А принадлежит плоскости , а В — плоскости А.

 

Плоскость треугольника перемещается в пространстве до тех пор, пока горизонталь h1 треугольника не станет перпендикулярна к фрон­тальной плоскости проекций П2. Для этого на произвольном расстоя­нии от оси х вычерчивают горизонтальную проекцию треугольника A1B1C1 с условием, что П2, а значит х. При этом вер­шины треугольника, перемещаясь каждая в своей плоскости, займут новое положение - А'2В'2С'2. Соединив эти точки, получают новое положение треугольника ABC, спроецированного в линию, т.е. пер­пендикулярного к плоскости П2.

На втором этапе, чтобы получить натуральную величину тре­угольника ABC, его плоскость поворачивают до тех пор, пока она не будет параллельна одной из плоскостей проекций. В рассматриваемом решении фронтальную проекцию треугольника А'2В'2С'2 располагают на произвольном расстоянии от оси х параллельно плоскости П1. При этом вершины А, В и С треугольника заключают в горизонтально проецирующие плоскости , Т, Р. По следам этих плоскостей будут перемещаться горизонтальные проекции вершин А'1 В'1 С'1. От но­вого положения фронтальной проекции А"2В"2С"2 проводят линии проекционной связи до пресечения с соответствующими следами плоскостей, в которых они перемещаются (,T1,P1), и получают точки А"1 В"1 C"1. Соединив эти точки между собой, получают тре­угольник ABC в натуральную величину.

4) Решение методом вращения вокруг линии уровня (рис. 9.12).

Для решения задачи этим способом необходимо повернуть плос­кость треугольника вокруг линии уровня, в данном случае вокруг го­ризонтали, в положение, параллельное горизонтальной плоскости проекции. Через точку А в плоскости треугольника ABC проводят го­ризонталь h, фронтальная проекция которой будет параллельна оси х. Отмечают точку 12 и находят ее горизонтальную проекцию 11. Пря­мая A111 является горизонтальной проекцией h1 горизонтали h. Во­круг горизонтали будут вращаться точки В и С. Для определения ра­диуса вращения точки С на горизонтальной проекции проводят перпендикуляр C1O1 A111 точка О1, является центром вращения точ­ки С.

Для определения натуральной величины радиуса вращения строят прямоугольный треугольник, в котором O1C1 - один из катетов. Вто­рой катет - разность координат отрезка О2С2, взятого с фронталь­ной проекции. В построенном треугольнике гипотенуза O1C0 - нату­ральная величина радиуса вращения.

На продолжении перпендикуляра O1C1 откладывают |RBp.| и полу­чают новое положение вершины С после вращения — С0. Вторая вер­шина В0 получается пересечением луча C011 и перпендикуляра к горизонтальной проекции h1 проведенного через точку b1.

Треугольник A1B0C0 есть искомая натуральная величина тре­угольника ABC.

5) Решение методом совмещения (рис. 9.13).

 

 

Для решения задачи методом совмещения необходимо построить следы плоскости , которой принадлежит треугольник ABC. Для этого проводят в плоскости треугольника ABC фронталь и находят го­ризонтальный след этой фронтали – N1. По условию задачи верши­на С треугольника принадлежит горизонтальной плоскости проек­ций П1. Тогда горизонтальный след плоскости проводят через точки n1 и C1. Соединив эти две точки и продлив отрезок до пересе­чения с осью х, находят точку схода следов . Учитывая свойство, что все фронтали плоскости параллельны ее фронтальному следу, фронтальный след 2 плоскости проводят через точку парал­лельно фронтали .

Для нахождения натуральной величины треугольника ABC необ­ходимо построить совмещенное положение плоскости с горизон­тальной плоскостью проекций П1. Для этого через вершину А прово­дят горизонталь h1. На фронтальном следе 2 фиксируют точку 22. Ее горизонтальная проекция - точка 21. Точка 2 вращается в плоскости, перпендикулярной к горизонтальному следу плоскости . Поэтому, чтобы построить точку 2 в совмещенном положении 20, проводят из 21 перпендикуляр к горизонтальному следу , а из центра дугу ок­ружности радиусом до пересечения с направлением перпендику­ляра. Соединив с 20, получают совмещенное положение фронталь­ного следа - Далее через точку 2о проводят горизонталь ha в совме­щенном положении. На этой горизонтали находят точку А0, проведя перпендикуляр из точки a1 к горизонтальному следу .

По такой же схеме строят совмещенное положение точки В0. Со­вмещенное положение точки С совпадает с ее горизонтальной проек­цией С1 т.е. . Соединив построенные точки, получают тре­угольник А0В0С0 - это и есть натуральная величина треугольника ABC.

 





Поделиться с друзьями:


Дата добавления: 2015-10-27; Мы поможем в написании ваших работ!; просмотров: 2473 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Велико ли, мало ли дело, его надо делать. © Неизвестно
==> читать все изречения...

2489 - | 2156 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.