Этот метод является частным случаем метода вращения вокруг линии уровня. В качестве оси вращения выбирается линия пересечения плоскости, в которой лежит та или иная фигура, с одной из плоскостей проекций. Иначе говоря, осью вращения служит горизонтальный или фронтальный след плоскости. При этом каждая точка, принадлежащая рассматриваемой фигуре, при вращении перемещается в плоскости, перпендикулярной к следу той плоскости, в которой она лежит. Например, плоскость , заданную своими следами и , необходимо совместить с горизонтальной плоскостью проекций П1 (рис. 9.7).
Для решения поставленной задачи берут на фронтальном следе плоскости произвольную точку 12 и находят ее горизонтальную проекцию 1, которая лежит на оси х. Далее из точки 11проводят луч, перпендикулярный к горизонтальному следу плоскости (любая точка при вращении должна перемещаться в плоскости, перпендикулярной к оси поворота). На нем находят совмещенное положение точки 1 — точку 10, как точку пересечения луча с дугой окружности радиусом . Точка 10 принадлежит одновременно и плоскости П1 и новому (совмещенному) положению плоскости . Через точку 10 проводят новый фронтальный след 0 плоскости . Следы 1 и 0 характеризуют новое (совмещенное) положение плоскости .
9.6. Вопросы для самопроверки
1. В чем состоит сущность преобразования ортогональных проекций способом замены плоскостей проекций?
2. Сколько замен плоскостей проекций и в какой последовательности необходимо выполнить, чтобы перевести отрезок прямой общего положения в отрезок прямой частного положения?
3. Сколько замен плоскостей проекций и в какой последовательности необходимо выполнить, чтобы определить натуральную величину плоской фигуры?
4. В чем заключается способ вращения вокруг проецирующейоси?
5. В каких плоскостях перемещается точка, вращаемая вокруг оси, перпендикулярной к плоскостям П1 и П2?
6. Сущность способа плоскопараллельного перемещения.
7. Что представляет собой преобразование чертежа способом вращения вокруг линии уровня?
8. В чем заключается преобразование чертежа способом совмещения?
9.7. Примеры решения задач
Ниже приведены решения одной и той же задачи вышеописанными методами.
9.7.1 Задание: определить натуральную величину треугольника общего положения ABC, заданного проекциями вершин A1 B1 C1 и А2В2С2 (рис. 9.8), а также угол наклона плоскости треугольника к П1.
1) Решение методом замены плоскостей проекций (рис. 9.9).
Плоскость треугольника спроецируется в натуральную величину в том случае, если она будет в пространстве параллельна одной из плоскостей проекций. Одним преобразованием задачу решить невозможно. Она решается в два этапа: при первой замене плоскостей проекций получают плоскость треугольника ABC, перпендикулярную к новой плоскости проекций, при второй замене - получают плоскость треугольника, параллельную новой плоскости проекций.
Первый этап. Одним из условий перпендикулярности двух плоскостей является наличие прямой, принадлежащей одной из плоскостей, перпендикулярной к другой плоскости. Используя этот признак, проводят через точку А в плоскости треугольника горизонталь (h). Затем на произвольном расстоянии от горизонтальной проекции треугольника A1B1C1 проводят ось x1новой системы плоскостей проекций П1 /П4 перпендикулярно к горизонтальной проекции горизонтали h1. В новой системе треугольник ABC стал перпендикулярен к новой плоскости проекций П4.
На линиях проекционной связи в новой системе откладывают координаты z точек А, В, С с фронтальной проекции исходной системы плоскостей П1/П2. При соединении новых проекций А4, B 4, С4 получают прямую линию, в которую спроецировалась плоскость треугольника ABC. На этом этапе определяется угол наклона плоскости треугольника к горизонтальной плоскости проекции П1 - угол . На чертеже это угол между осью x1 и проекцией С4А4В4.
Второй этап. Выбираем новую плоскость проекции П5, параллельную плоскости треугольника, т.е. новую ось x2 проводят параллельно С4А4В4 на произвольном расстоянии. Получают новую систему П4/П5. Полученный треугольник А5В5С5 и есть искомая натуральная величина треугольника ABC.
2) Решение методом вращения вокруг проецирующей оси
(рис. 9.10).
Задача решается в два этапа. На первом этапе выполняют вращение так, чтобы плоскость треугольника ABC преобразовалась в проецирующую плоскость, т.е. стала перпендикулярна к одной из плоскостей проекций. Для этого на фронтальной проекции чертежа проводят горизонталь h2 через точку А2. Затем строят горизонтальную проекцию h1 горизонтали h через точки A1 и 11 Через точку 1 проводят ось i - ось вращения треугольника так, чтобы она была перпендикулярна к П1. На фронтальной проекции через вершины А2 и В2 проводят горизонтальные плоскости уровня 2 и 2. Вершина С принадлежит плоскости П1 поэтому ее плоскостью вращения будет плоскость проекций П1. На горизонтальной проекции, взяв за центр вращения проекцию i1 поворачивают горизонталь А так, чтобы на плоскость П2 она спроецировалась в точку. На чертеже это выразится тем, что h'1 займет новое положение - перпендикулярно к оси х. При этом на фронтальной проекции точка А2 перемещается по следу плоскости 2 до пересечения с линией связи, проведенной через точку a'1. На горизонтальной проекции поворачиваем оставшиеся вершины В и С вокруг оси так, чтобы . На фронтальной проекции вершина В перемещается по следу плоскости 2, а вершина С - по оси х. Соединив новое положение всех вершин треугольника ABC, получают проекцию А'2В'2С'2, сливающуюся в линию. Этим достигают проецирующего положения треугольника ABC. На данном этапе, при необходимости, находят угол наклона плоскости треугольника ABC к П1 - .
На втором этапе проводят ось i`через вершину С так, чтобы ось была фронтально проецирующая. При этом С'2 = /'2, а горизонтальная проекция i'1 пройдет через проекцию С'1. Вокруг оси поворачивают треугольник так, чтобы он стал параллелен горизонтальной плоскости проекций. В данной задаче вращают точки А'2 и В'1, вокруг i`2 = С'2 до совмещения с осью х, при этом горизонтальные проекции B'1 и A'1 будут перемещаться в горизонтально проецирующихся плоскостях уровня и P1 и займут новое положение В"1, и А"1 вершина С останется на месте. Соединив новые точки между собой, получают треугольник ABC в натуральную величину.
3) Решение методом плоскопараллельного перемещения (рис. 9.11).
Задача решается в два этапа. На первом этапе преобразовывают чертеж так, чтобы плоскость треугольника ABC стала перпендикулярна к одной из плоскостей проекций, т.е. должна в себе содержать прямую, перпендикулярную к этой плоскости. Для этого проводят в
плоскости треугольника горизонталь h (фронтальная проекция А212 // х, а горизонтальная — A111). Каждую вершину треугольника заключают в свою плоскость уровня, параллельную плоскости П1. В рассматриваемом примере вершина С принадлежит плоскости проекций П1, А принадлежит плоскости , а В — плоскости А.
Плоскость треугольника перемещается в пространстве до тех пор, пока горизонталь h1 треугольника не станет перпендикулярна к фронтальной плоскости проекций П2. Для этого на произвольном расстоянии от оси х вычерчивают горизонтальную проекцию треугольника A1B1C1 с условием, что П2, а значит х. При этом вершины треугольника, перемещаясь каждая в своей плоскости, займут новое положение - А'2В'2С'2. Соединив эти точки, получают новое положение треугольника ABC, спроецированного в линию, т.е. перпендикулярного к плоскости П2.
На втором этапе, чтобы получить натуральную величину треугольника ABC, его плоскость поворачивают до тех пор, пока она не будет параллельна одной из плоскостей проекций. В рассматриваемом решении фронтальную проекцию треугольника А'2В'2С'2 располагают на произвольном расстоянии от оси х параллельно плоскости П1. При этом вершины А, В и С треугольника заключают в горизонтально проецирующие плоскости , Т, Р. По следам этих плоскостей будут перемещаться горизонтальные проекции вершин А'1 В'1 С'1. От нового положения фронтальной проекции А"2В"2С"2 проводят линии проекционной связи до пресечения с соответствующими следами плоскостей, в которых они перемещаются (,T1,P1), и получают точки А"1 В"1 C"1. Соединив эти точки между собой, получают треугольник ABC в натуральную величину.
4) Решение методом вращения вокруг линии уровня (рис. 9.12).
Для решения задачи этим способом необходимо повернуть плоскость треугольника вокруг линии уровня, в данном случае вокруг горизонтали, в положение, параллельное горизонтальной плоскости проекции. Через точку А в плоскости треугольника ABC проводят горизонталь h, фронтальная проекция которой будет параллельна оси х. Отмечают точку 12 и находят ее горизонтальную проекцию 11. Прямая A111 является горизонтальной проекцией h1 горизонтали h. Вокруг горизонтали будут вращаться точки В и С. Для определения радиуса вращения точки С на горизонтальной проекции проводят перпендикуляр C1O1 A111 точка О1, является центром вращения точки С.
Для определения натуральной величины радиуса вращения строят прямоугольный треугольник, в котором O1C1 - один из катетов. Второй катет - разность координат отрезка О2С2, взятого с фронтальной проекции. В построенном треугольнике гипотенуза O1C0 - натуральная величина радиуса вращения.
На продолжении перпендикуляра O1C1 откладывают |RBp.| и получают новое положение вершины С после вращения — С0. Вторая вершина В0 получается пересечением луча C011 и перпендикуляра к горизонтальной проекции h1 проведенного через точку b1.
Треугольник A1B0C0 есть искомая натуральная величина треугольника ABC.
5) Решение методом совмещения (рис. 9.13).
Для решения задачи методом совмещения необходимо построить следы плоскости , которой принадлежит треугольник ABC. Для этого проводят в плоскости треугольника ABC фронталь и находят горизонтальный след этой фронтали – N1. По условию задачи вершина С треугольника принадлежит горизонтальной плоскости проекций П1. Тогда горизонтальный след плоскости проводят через точки n1 и C1. Соединив эти две точки и продлив отрезок до пересечения с осью х, находят точку схода следов . Учитывая свойство, что все фронтали плоскости параллельны ее фронтальному следу, фронтальный след 2 плоскости проводят через точку параллельно фронтали .
Для нахождения натуральной величины треугольника ABC необходимо построить совмещенное положение плоскости с горизонтальной плоскостью проекций П1. Для этого через вершину А проводят горизонталь h1. На фронтальном следе 2 фиксируют точку 22. Ее горизонтальная проекция - точка 21. Точка 2 вращается в плоскости, перпендикулярной к горизонтальному следу плоскости . Поэтому, чтобы построить точку 2 в совмещенном положении 20, проводят из 21 перпендикуляр к горизонтальному следу , а из центра дугу окружности радиусом до пересечения с направлением перпендикуляра. Соединив с 20, получают совмещенное положение фронтального следа - Далее через точку 2о проводят горизонталь ha в совмещенном положении. На этой горизонтали находят точку А0, проведя перпендикуляр из точки a1 к горизонтальному следу .
По такой же схеме строят совмещенное положение точки В0. Совмещенное положение точки С совпадает с ее горизонтальной проекцией С1 т.е. . Соединив построенные точки, получают треугольник А0В0С0 - это и есть натуральная величина треугольника ABC.