Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Взаимное положение прямых в пространстве




Две прямые в пространстве могут быть параллельными, пересе­кающимися или скрещивающимися. Если две прямые параллельны, то их одноименные проекции взаимно параллельны (рис. 4.8). Если две прямые пересекаются, то точки пересечения одноименных проек­ций принадлежат одной линии связи (рис. 4.9). В частном случае пе­ресекающиеся прямые могут быть перпендикулярными.

 

 

Дано:

a b; плоскость П`, b||П`

Доказать, что a' b'.

Для доказательства через прямые а' и а вводится дополнительная плоскость . Прямая b перпендикулярна к плоскости и параллельна проекции прямой b'. Отсюда прямая V тоже перпендикулярна к плос­кости .

Прямая а' принадлежит плоскости , следовательно, а' перпенди­кулярна к b', т.е. прямой угол проецируется без искажения.

Если две прямые не параллельны и не пересекаются, т.е. не лежат в одной плоскости, то они являются скрещивающимися (рис. 4.11).

Взаимное положение двух прямых при наличии профильной пря­мой устанавливается по третьей проекции или каким-либо иным спо­собом. На рис. 4.12 изображены две скрещивающиеся прямые, хотя их горизонтальные и фронтальные проекции пересекаются, а про­фильные — параллельны между собой.

 

 

ПЛОСКОСТЬ

Задание плоскости

Плоскость задается тремя произвольными точками, не принадле­жащими одной прямой. Плоскость в пространстве можно задать:

· тремя точками, не лежащими на одной прямой (рис. 5.1, а);

· прямой и не принадлежащей ей точкой (рис. 5.1, б);

· двумя пересекающимися прямыми (рис. 5.1, в);

· двумя параллельными прямыми (рис. 5.1, г);

· любой плоской фигурой (рис. 5.1, (3).

 

Каждый из перечисленных способов задания плоскости допускает переход к любому другому, т.к. положение прямой в плоскости опре­деляется двумя ее точками или одной точкой и направлением этой прямой.

Часто применяется способ задания плоскости с помощью прямых линий (взаимно пересекающихся или параллельных), по которым данная плоскость пересекается с плоскостями проекций П1 П2, Пз -Это задание плоскости следами сохраняет наглядность изображения (рис. 5.2).

Следы плоскости

Линия пересечения рассматриваемой плоскости с плоскостью проекций ( П1, П2, П3) называется следом плоскости. Иными словами, след плоскости — прямая, лежащая в плоскости проекций. Следу присваивается наименование той плоскости проекций, которой он принадлежит. Например, горизонтальный след получен при пересече­нии заданной плоскости с плоскостью П1 и обозначается , фрон­тальный — с плоскостью П2 ( ), профильный — с плоскостью П3 (). Два следа одной и той же плоскости пересекаются на оси про­екции в точке, называемой точкой схода следов. Каждый из следов плоскости совпадает со своей одноименной проекцией, остальные проекции оказываются лежащими на осях. Например, горизонтальный след плоскости £ (рис. 5.2) совпадает со своей горизонтальной проек­цией , фронтальная его проекция находится на оси Jt, а профильная на оси у. По расположению следов плоскости можно судить о по­ложении данной плоскости в пространстве относительно плоскостей проекций П12, П3.





Поделиться с друзьями:


Дата добавления: 2015-10-27; Мы поможем в написании ваших работ!; просмотров: 1104 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2665 - | 2644 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.