Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Параллельность прямой и плоскости




Прямая и плоскость параллельны, если в плоскости имеется пря­мая, параллельная заданной прямой.

7.3.1 Задание: построить проекции прямой, проходящей через точку А и параллельной прямой т, принадлежащей плоскости (BCD) (рис. 7.5).

Решение: в условии задачи задана фронтальная проекция m2 пря­мой m. Поэтому необходимо вначале найти горизонтальную проек­цию m1 прямой m. Условия параллельности прямой и плоскости: пря­мая параллельна плоскости, если она параллельна какой-то прямой, расположенной в данной плоскости.

Используя это условие, строят проекции искомой прямой, прохо­дящие через точку А; п1 проводится параллельно т1, n2 — параллель­но m2.

 

ПРЯМАЯ ЛИНИЯ, ПЕРПЕНДИКУЛЯРНАЯ К ПЛОСКОСТИ

Основные положения

Обратимся к рисунку 8.1, на котором изображена плоскость и перпендикулярная к ней прямая п.

Прямая и перпендикулярна к любой прямой плоскости , т.е. . Каждый такой прямой угол проецируется на плоскость проекций в виде некоторого угла, но угол между прямой n и горизонталью плоскости h проецируется на горизонтальную плос­кость проекций прямым углом, так как его сторона h||П1.

Если , то .

Угол между прямой п и фронталью плоскости проецируется на фронтальную плоскость проекций прямым углом (его сторона || П2).

Если , то .

Если прямая перпендикулярна к плоскости, то ее проекции пер­пендикулярны к одноименным проекциям линий уровня этой плоско­сти.

На рисунке 8.2 через точку N проведена прямая и, перпендику­лярная к плоскости . Для этого в плоскости (аxb) определены го­ризонталь h и фронталь , и горизонтальная проекция перпендикуляра проведена перпендикулярно к горизонтальной проекции горизонтали, а фронтальная проекция — перпендикулярно к фронтальной проек­ции фронтали: .

В том случае, когда плоскость задана следами (рис. 8.3), проекции перпендикуляра располагаются перпендикулярно к одноименным следам плоскости: .

Рисунок 8.2 позволяет утверждать, что изображенные на нем пря­мая и и плоскость S взаимно перпендикулярны. Действительно, из чертежа следует, что прямая n перпендикулярна к прямой h, так как угол между горизонтальными проекциями сторон угла прямой и одна сторона его (h) параллельна плоскости П1. Точно так же прямая и перпендикулярна к прямой . Но если прямая линия перпендикулярна к двум пересекающимся прямым плоскости, то она перпендикулярна к этой плоскости.

Плоскость, перпендикулярную к данной прямой, определяют с помощью пересекающихся линий уровня. На рисунке 8.4 - условие, 6 - решение) через данную точку А проведена плоскость , перпенди­кулярная к заданной прямой п. Горизонталь h плоскости проходит че­рез точку А ( ). Фронталь этой плоскости может быть также проведена через точку А, но может пересекать горизонталь и в любой другой точке, поскольку все они находятся в искомой плоско­сти. На рисунке 8.4 фронталь f2 проходит через точку В .

 

На рисунке 8.5 показана прямая, перпендикулярная к горизон­тально проецирующей плоскости. Очевидно, эта линия является гори­зонталью.

 

На рисунке 8.6 изображена прямая, перпендикулярная к фрон­тально проецирующей плоскости. Она является фронталью.

На рисунке 8.7 изображена прямая п (MN), перпендикулярная к профильно проецирующей плоскости . Заметим, что, проведя проек­ции и мы еще не определим величину искомого пер­пендикуляра.

Это не должно нас удивлять, так как , а перпендикулярность прямой и плоскости обеспечивается перпендикулярностью этой пря­мой к двум пересекающимся прямым плоскости. Для решения задачи нужно построить профильный след. Тогда .

Если требуется определить, перпендикулярна ли некоторая пря­мая т к заданной плоскости , то через какую-нибудь точку М этой прямой следует провести перпендикуляр n к плоскости (рис. 8.8).

При совпадении линии m и n прямая m перпендикулярна к плоскости .

 

Примеры решения задач

8.2.1 Задание: опустить перпендикуляр из точки А на плоско­сть () и найти его основание точку В.

Решение: исходя из принципа перпендикулярности прямой и плоскости (прямая перпендикулярна к плоскости, если она перпенди­кулярна к двум пересекающимся прямым этой плоскости), необходи­мо в плоскости провести две пересекающиеся прямые, а именно гори­зонталь h и фронталь (рис. 8.9).

 

 

Затем из точки А проводим нормаль n к плоскости . На основа­нии теоремы о проецировании прямого угла и . Если плоскость задана следами, то и (рис. 8.10). Основание перпендикуляра определяется как точка пересечения его с плоско­стью. Для этого нужно провести через нормаль проецирующую плос­кость , найти линию пересечения l(l1,l2)плоскостей и и на пересечении этой линии и нормали отметить общую точку В для нормали и плоскости ().

 





Поделиться с друзьями:


Дата добавления: 2015-10-27; Мы поможем в написании ваших работ!; просмотров: 567 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лаской почти всегда добьешься больше, чем грубой силой. © Неизвестно
==> читать все изречения...

2390 - | 2261 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.