Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Теореми про середнє значення




 

Важливе значення у курсі математичного аналізу мають так звані теореми про середнє значення диференціального числення, в яких під знаком похідної знаходиться середнє значення незалежної змінної, котре взагалі нам невідоме. Воно і похідній надає, в деякому розумінні, середнє значення. У зв’язку з цим усі ці теореми називають “теоремами про середнє”.

Теорема Ферма

 

Теорема. Нехай функція визначена на інтервалі і в деякій точці має найбільше або найменше значення. Тоді, якщо в цій точці існує похідна , то вона рівна нулю, тобто .

Доведення. Нехай для визначеності функція функція в точці приймає найбільше значення, тобто для всіх .

За означенням похідної

 

,

 

причому ця границя не залежить від того, як буде прямувати до . Якщо і , то , а тому

 

.

 

Якщо ж і , то .

 

Отже,

 

.

 

Звідси випливає, що .

Аналогічно розглядається випадок, коли в точці функція досягає найменшого значення.

Обертання в нуль похідної в точці , означає, що дотична до графіка функції в точці з абсцисою паралельна вісі (рис. 22).

 

Зауваження. Теорема Ферма справедлива, коли , і неправильна, коли замість інтервалу розглядати відрізок . Наприклад, функція на відрізку приймає найменше значення в точці , а найбільше в точці . Проте в жодній із цих точок похідна в нуль не обертається.

Теорема Ролля

 

 

Теорема. Якщо функція визначена на відрізку і вона

1) неперервна в кожній точці відрізка .

2) диференційована на інтервалі .

3) на кінцях відрізка приймає рівні значення ,

то існує точка така, що .

Доведення. Оскільки функція неперервна на відрізку , то за другою теоремою Вейєрштрасса існують точки , в яких функція приймає найменше і найбільше значення, тобто і .

Якщо , то функція на відрізку приймає постійне значення, оскільки . Тому в будь-якій точці інтервалу .

Якщо , то принаймні одне із значень або функція приймає у деякій точці , тобто на кінцях відрізка (оскільки ).

Так як функція диференційована в точці , то за теоремою Ферма .

Із теореми Ролля випливає, що для функції неперервної на відрізку , диференційованої на інтервалі і такої, що , існує точка така, що дотична до графіка функції у точці паралельна вісі (рис. 23).

 

 

 

Теорема Лагранжа

 

 

Якщо функція визначена на відрізку і вона

1) неперервна в кожній точці відрізка ,

2) диференційована на інтервалі , то існує точка така, що

.

 

Доведення. Розглянемо допоміжну функцію

 

.

 

Ця функція визначена на відрізку і задовольняє всім умовам теореми Ролля. Дійсно,

1) оскільки і неперервні функції на відрізку , то і функція також неперервна на .

2) функція диференційована на інтервалі :

.

 

3) на кінцях відрізку функція має рівні значення

 

.

 

За теоремою Ролля існує точка така, що , тобто

 

.

Звідси маємо

 

.

Зауваження. Якщо функція на відрізку задовольняє умовам теореми Лагранжа, то із останньої формули одержуємо

 

.

 

Ця формула називається формулою скінчених приростів або формулою Лагранжа. Якщо в цій формулі покласти , то одержимо

 

, де .

 

Геометричний зміст теореми Лагранжа полягає в наступному. Якщо функція задовольняє умовам теореми Лагранжа, то існує точка така, що дотична до графіка функції у точці паралельна хорді, проведеній через точки (рис. 24).

 

 

 

 





Поделиться с друзьями:


Дата добавления: 2015-10-19; Мы поможем в написании ваших работ!; просмотров: 1220 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2382 - | 2282 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.