Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Расширенный минимаксный критерий




Рассмотрим в заключение еще один метод, допускающий интерпретацию в качестве расширенного минимаксного крите­рия. В нем используются понятия теории вероятностей, а также теории игр. В технических приложениях этот критерий до сего времени применяется мало.

Основным здесь является предположение о том, что каждому из n возможных состояний Fj приписана вероятность его появления qj: .

Сформируем из n вероятностей qj вектор q = (q 1, …, qn) и обозначим через W (n) множество всех n-мерных вероятностных векторов. Выбор какого-либо варианта решения Ei приводит при достаточно долгом применении Ei к среднему результату . Если же теперь случайным образом с распределением вероятностей p =(p 1,…, pmW (m) смешать m вариантов решений Ei, то в результате получим среднее значение

.

В реальной ситуации вектор q =(q 1, …, qn), относящийся к состояниям Fj, бывает, как правило, неизвестен. Ориентируясь применительно к значению e (p, q) на наименее выгодное распределение q состояний Fj и добиваясь, с другой стороны, максимального увеличения e (p, q) за счет выбора наиболее удачного распределения p вариантов решения Ei, получают в результате значение, соответствующее расширенному ММ-критерию.

Обозначим теперь E (p) обобщенный вариант решения, определяемый с помощью выбора вероятностного вектора , а через – множество всех таких критериев.

E(p 0) = { E (p 0)| E (p 0 Ù e (p 0, q 0) = },

где p – вероятностный вектор для Ei, а q – вероятностный вектор для Fj.

Таким образом, расширенный ММ-критерийзадается целью найти наивыгоднейшее распределение вероятностей на множестве вариантов Ei, когда в многократно воспроизводящейся ситуации ничего не известно о вероятностях состояний Fj. Поэтому предполагается, что Fj распределены наименее выгодным образом.





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 522 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинайте делать все, что вы можете сделать – и даже то, о чем можете хотя бы мечтать. В смелости гений, сила и магия. © Иоганн Вольфганг Гете
==> читать все изречения...

2312 - | 2095 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.