Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Зависимость между изменениями сечения и скоростью течения потока сжимаемой жидкости




В гидродинамике несжимаемой жидкости устанавливается, что скорости вдоль потока несжимаемой жидкости изменяются обратно пропорционально площадям живых сечений. В условиях сжимаемой жидкости уравнение постоянства массы (рис. 1 – 1)

приводит в некоторых случаях к противоположным выводам.

 

Представим уравнение в дифференциальной форме. Логарифмируя, а затем дифференцируя его под знаком логарифма, получим:

                                       (1 – 1)

  Преобразуем последнее уравнение.

В свою очередь из уравнения изменения количества движения для одномерного движения потока сжимаемой жидкости (уравнения Д. Бернулли в дифференциальной форме) имеем   

Тогда

Подставляя значение  в (1 – 1) и, решая его относительно , получим:

Учитывая, что , последнее уравнение примет вид:

                                       (1 – 2)

Это уравнение позволяет сделать следующие выводы. Если число М < 1 (w < a), правая часть уравнения будет отрицательной. Следовательно, знаки перед d w и dw будут противоположными. Это значит, что в дозвуковом потоке, как и в потоке несжимаемой жидкости, скорость w обратно пропорциональна площади живого сечения w.

Если же М > 1, то есть когда w > a, знаки перед d w и dw совпадают. Это значит, что в сверхзвуковом потоке сжимаемой жидкости скорость w прямо пропорциональна площади живого сечения w. То есть следует вывод, прямо противоположный выводу, широко известному из гидродинамики несжимаемой жидкости.

Подобное явление в сжимаемой жидкости возможно потому, что увеличение скорости в нем вызывает не только уменьшение давления (как и в несжимаемой жидкости), но и уменьшение плотности, то есть - её расширение. Следовательно, расширение струи газа в сверхзвуковом потоке ведет к расширению самого газа в термодинамическом смысле, то есть к уменьшению давления, плотности, температуры и к увеличению скорости.

Рассмотрим, в каких условиях возможен переход дозвукового потока в сверхзвуковой и, наоборот, сверхзвукового в дозвуковой.

Пусть имеется поток, в котором w = a, то есть М = 1,0. Из уравнения (1 – 2) следует, что в этом случае  и что . Если при непрерывном изменении скорости течения струи , то это значит, что в данном месте струя переходит от расширения к сужению или, наоборот, от сужения к расширению.

Теперь установим, в каких условиях может наступать равенство w = a (М = 1,0) и переход потока из одного вида в другой.

Рассмотрим две возможные конфигурации потока (струи): расширяющуюся и сужающуюся к середине (рис. 1 - 2).

В первом случае (рис. 1 - 2,а) при дозвуковой скорости потока в начале струи скорость в ней уменьшается в направлении течения и в сечении w max имеет минимальное значение.

При сверхзвуковой скорости потока скорость увеличивается в направлении течения и в сечении w max имеет наибольшее значение. Следовательно, в обоих случаях скорость течения в сечении w max может быть равной скорости звука.

Во втором случае (рис. 1 – 2,б) при дозвуковой скорости потока в начале струи скорость в струе по мере уменьшения площади сечения увеличивается и в сечении w min может стать звуковой, а затем и сверхзвуковой.

При сверхзвуковой скорости потока в начале струи скорость струи по мере уменьшения сечения также уменьшается и в сечении w min может стать звуковой, а затем будет уменьшаться в расширяющейся части струи уже как дозвуковая скорость.

Следовательно, скорость струи может перейти значение скорости звука только в наиболее узком сечении струи. Это сечение называют критическим, а скорость звука, равную скорости течения потока, называют, как указывалось выше, критической скоростью.

Рассмотренную выше особенность струй (потоков) сжимаемых жидкостей (газов) учитывают при проектировании специальных насадок (сопел), например, в ракетостроении, которые должны обеспечить истечение сжимаемых жидкостей со сверхзвуковой скоростью из ёмкостей, где они находятся под давлением.

В честь шведского инженера Лаваля, предложившего для получения сверхзвуковых потоков плавно сужающуюся и затем плавно расширяющуюся насадку (сопло), эту насадку называют сопло Лаваля (рис. 1 - 2,б).





Поделиться с друзьями:


Дата добавления: 2018-10-15; Мы поможем в написании ваших работ!; просмотров: 1585 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2213 - | 2174 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.