Взаимосвязь уравнения неразрывности и уравнения Бернулли
Совместное применение уравнения Бернулли к потоку конечных размеров и уравнения неразрывности позволяет решать многие инженерные задачи, связанные с движением жидкости в реках, каналах, трубах, гидравлических машинах и т.п.
По смыслу уравнения неразрывности - всякое изменение живого сечения, в частном случае диаметра трубы, неизбежно влечет изменение средней скорости движения. В соответствии же с уравнением Бернулли изменение скорости (а, следовательно, и скоростного напора ) сказывается на величине гидродинамического давления. При рассмотрении некоторых примеров совместного применения этих уравнений не будем пока учитывать потери напора на преодоление гидравлических сопротивлений, учитываемых членом hw в уравнении (3 – 3).
Наглядной иллюстрацией уравнения Бернулли может служить явление, известное под названием гидродинамического парадокса. Схема прибора для демонстрации гидродинамического парадокса приведена на рис. 3 - 11. Жесткая цилиндрическая труба AB имеет на участке abвставку в виде тонкостенной резиновой трубки того же диаметра, что и труба AB. Этот участок заключен в герметичную прозрачную камеру C с трубкой E, по которой может нагнетаться воздух под давлением. По трубе AB в течение всего опыта проходит жидкость с постоянным расходом. Если производить повышение давления в камере C путем нагнетания воздуха, то можно было ожидать, что резиновая трубка под действием возросшего давления будет сжиматься, однако на самом деле наблюдается картина прямо противоположная ожидаемой: стенки резиновой трубки расширяются и принимают форму, показанную на чертеже пунктиром. Объясняется это тем, что повышенное давление в камере C передается через стенки резиновой трубки потоку жидкости. Давление в жидкости увеличивается и в соответствии с уравнением Бернулли должна уменьшиться скорость течения. На основании уравнения неразрывности при постоянном расходе это может произойти только за счет увеличения поперечногосечениярезиновой трубки, что и наблюдается в опыте.
Кавитация
В некоторых случаях при движении жидкости в закрытых сечениях происходит явление, связанное с изменением агрегатного состояния жидкости, т.е. превращение ее в пар с выделением из жидкости растворенных в ней газов.
Наглядно это явление можно продемонстрировать на простом устройстве, состоящим из трубы, на отдельном участке которой установлена прозрачная трубка Вентури (рис.4.2). Вода под давлением движется от сечения 1-1 через сечение 2-2 к сечению 3-3. Как видно из рисунка, сечение 2-2 имеет меньший диаметр. Скорость течения жидкости в трубе можно изменять, например, установленным после сечения 3-3 краном.
Рис. 4.2. Схема трубки для демонстрации кавитации
При небольшой скорости никаких видимых изменений в движении жидкости не происходит. При увеличении скорости движения жидкости в узком сечении трубки Вентури 2-2 появляется отчетливая зона с образованием пузырьков газа. Образуется область местного кипения, т.е. образование пара с выделением растворенного в воде газа. Далее при подходе жидкости к сечению 3-3 это явление исчезает.
Это явление обусловлено следующим. Известно, что при движении жидкой или газообразной среды, давление в ней падает. Причем, чем выше скорость движения среды, тем давление в ней ниже. Поэтому, при течении жидкости через местное сужение 2-2, согласно уравнению неразрывности течений, увеличивается скорость с одновременным падением давления в этом месте. Если абсолютное давление при этом достигает значения равного давлению насыщенных паров жидкости при данной температуре или значения равного давлению, при котором начинается выделение из нее растворимых газов, то в данном месте потока наблюдается интенсивное парообразование (кипение) и выделение газов. Такое явление называется кавитацией.
При дальнейшем движении жидкости к сечению 3-3, пузырьки исчезают, т.е. происходит резкое уменьшение их размеров. В то время, когда пузырек исчезает (схлопывается), в точке его схлопывания происходит резкое увеличение давления, которое передается на соседние объемы жидкости и через них на стенки трубопровода. Таким образом, от таких многочисленных местных повышений давлений (гидроударов), возникает вибрация.
Таким образом, кавитация - это местное нарушение сплошности течения с образованием паровых и газовых пузырей (каверн), обусловленное местным падением давления в потоке.
Кавитация в обычных случаях является нежелательным явлением, и ее не следует допускать в трубопроводах и других элементах гидросистем. Кавитация возникает в кранах, вентилях, задвижках, жиклерах и т.д.
Кавитация может иметь место в гидромашинах (насосах и гидротурбинах), снижая при этом их коэффициент полезного действия, а при длительном воздействии кавитации происходит разрушение деталей, подверженных вибрации. Кроме этого разрушаются стенки трубопроводов, уменьшается их пропускная способность вследствие уменьшения живого сечения трубы.