Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Определение случайной функции.




o Случайной функцией называется функция X(t), значение которой при любом значении аргумента t является случайной величиной.

Другими словами, случайной функцией называется функция, которая в результате опыта может принять тот или иной конкретный вид, при этом заранее не известно, какой именно.

o Конкретный вид, принимаемый случайной величиной в результате опыта, называется  реализацией случайной функции.

o Т.к. на практике аргумент t чаще всего является временным, то случайную функцию иначе называют случайным процессом.

o На рисунке изображено несколько реализаций некоторого случайного процесса.

o Если зафиксировать значение аргумента t, то случайная функция X(t) превратится в случайную величину, которую называют сечением случайной функции, соответствующим моменту времени t. Будем считать распределение сечения непрерывным. Тогда Х(t) при данном t определяется плотностью распределения p(x; t).

o Очевидно, p(x; t) не является исчерпывающей характеристикой случайной функции X(t), поскольку она не выражает зависимости между сечениями X(t) в разные моменты времени t. Более полную характеристику дает функция —совместная плотность распределения системы случайных величин , где t1 и t2—произвольные значения аргумента t случайной функции. Еще более полную характеристику случайной функции X(t) даст совместимая плотность распределения системы трех случайных величин  и т.д.

o Говорят, что случайный процесс имеет порядок n, если он полностью определяется плотностью совместимого распределения  n произвольных сечений процесса, т.е. системы n случайных величин , где X(ti)—сечение процесса, отвечающее моменту времени ti, но не определяется заданием совместного распределения меньшего, чем n, числа сечений.

o Если плотность совместного распределения произвольных двух сечений процесса вполне его определяет, то такой процесс называется марковским.

 

Пусть имеется случайная функция X(t). Возникает задача описания ее с помощью одной или нескольких неслучайных характеристик. В качестве первой из них естественно взять функцию — математическое ожидание случайного процесса. В качестве второй берется среднее квадратическое отклонение случайного процесса .

 

Эти характеристики являются некоторыми функциями от t. Первая из них— это средняя траектория для всех возможных реализаций. Вторая характеризует возможный разброс реализаций случайной функции около средней траектории. Но и этих характеристик недостаточно. Важно знать зависимость величин X(t1) и X(t2). Эту зависимость можно характеризовать с помощью корреляционной функции или корреляционного момента.

.

Пусть имеются два случайных процесса, по нескольку реализаций которых изображено на рисунках.

У этих случайных процессов примерно одинаковые математические ожидания и средние квадратичные отклонения. Тем не менее это различные процессы. Всякая реализация для случайной функции X1(t) медленно меняет свои значения с изменением t, чего нельзя сказать о случайной функции X2(t). У первого процесса зависимость между сечениями X1(t) и  будет больше, чем зависимость для сечений X2(t) и  второго процесса, т.е.  убывает медленнее, чем , при увеличении Δt. Во втором случае процесс быстрее «забывает» свое прошлое.

Остановимся на свойствах корреляционной функции, которые вытекают из свойств корреляционного момента пары случайных величин.

Свойство 1. Свойство симметричности .

Свойство 2. Если к случайной функции X(t) прибавить неслучайное слагаемое , то от этого корреляционная функция  не изменится, т.е. .

Действительно,

Свойство 3. , где —неслучайная функция.

 При

o Центрированной случайной функцией , соответствующей X(t), называется  (2)

Очевидно, математическое ожидание центрированной функции—тождественный нуль, среднее квадратичное отклонение и корреляционная функция такие же, как и у X(t).

o Нормированной называется случайная функция

 (3),

 

, .

Для этой функции , , —коэффициент линейной корреляции между X(t1) и X(t2).





Поделиться с друзьями:


Дата добавления: 2018-10-15; Мы поможем в написании ваших работ!; просмотров: 472 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Что разум человека может постигнуть и во что он может поверить, того он способен достичь © Наполеон Хилл
==> читать все изречения...

2506 - | 2322 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.