Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Выпуклость графика функции. Связь с производной второго порядка.




График дифференцируемой функции называется выпуклым вниз на интервале (a;b), если он расположен выше любой ее касательной на этом интервале. График функции называется выпуклым вверх на интервале (a;b), если он расположен ниже любой ее касательной на этом интервале.

Интервалы выпуклости вниз и вверх находят с помощью следующей теоремы.

Теорема: Если функция во всех точках интервала (a;b) имеет отрицательную вторую производную, т.е. , то график функции в этом интервале выпуклый вверх. Если же ;b) – график выпуклый вниз.

42.Точки перегиба. Необходимое условие существования точки перегиба

Точка, в которой функция определена и в которой функция меняет направление выпуклости, называется точкой перегиба.

В окрестности такой точки X0 график функции y = f (x) слева и справа от точки X0 имеет разные направления выпуклости.

Необходимое условие существования точки перегиба:

Теорема. Пусть функция y = f (x) дважды непрерывно дифференцируема на интервале (a, b). Для того, чтобы точка М(x0, f(x0)) была точкой перегиба графика функции y = f (x) необходимо, чтобы f " (x0) = 0.

Необходимые условия наличия перегиба:

либо не существует

Достаточное условие существования точки перегиба

Теорема. Пусть функция y = f (x) имеет вторую производную f "(x) в некоторой достаточно малой окрестности точки x0 интервала (a, b), за исключением, быть может самой точки х0, а график функции имеет касательную в точке С = (х0, f (x0)). Если при переходе через точку х0 вторая производная f "(x) меняет знак, то точка С является точкой перегиба графика функции y = f (x).

 

Достаточные условия наличия перегиба:

1. Если меняет знак при переходе через точку x0, то x0 - точка перегиба.

 

2. Если то при n четном x0 -

 

точка перегиба, при n нечетном x0 не является точкой перегиба.

Асимптоты графика функции

Назовём асимптотами прямые линии, к которым неограниченно приближается график функции, когда точка графика неограниченно удаляется от начала координат. В зависимости от поведения аргумента при этом, различают вертикальные, наклонные и горизонтальные асимптоты.

Вертикальной асимптотой графика функции y=f(x) называется вертикальная прямая , если lim (x→a) f(x)=∞ или lim (x→a+0) f(x)=∞, или lim (x→a-0) f(x)=∞.

 

Наклонной асимптотой графика функции y=f(x) при x→+∞ называется прямая y=kx+b, если выполнены два условия: 1) некоторый луч (a; +∞) целиком содержится в D(f); 2) расстояние по вертикали между графиком и прямой стремится к 0 при x→+∞

Наклонной асимптотой графика функции y=f(x) при x→ - ∞ называется прямая y=kx+b, если выполнены два условия: 1) некоторый луч (-∞; a) целиком содержится в D(f); 2) расстояние по вертикали между графиком и прямой стремится к 0 при x→ - ∞

В случае, если наклонная асимптота расположена горизонтально, то есть при k=0, она называется горизонтальной асимптотой. Таким образом, горизонтальная асимптота -- частный случай наклонной асимптоты; прямая y=c=const является горизонтальной асимптотой графика y=f(x) при x→+∞ или x→-∞, если или соответственно.

 

45. Общая схема исследования функции и построения графика
Исследование функции у = f (х) целесообразно вести в определен-1н>й последовательности.

1. Найти область определения функции.

2. Найти (если это можно) точки пересечения графика с осями координат.

3. Найти интервалы знакопостоянства функции (промежутки, на Которых f(х) > 0 или f(х) < 0).

4. Выяснить, является ли функция четной, нечетной или общего Ища.

5. Найти асимптоты графика функции.

6. Найти интервалы монотонности функции.

7. Найти экстремумы функции.

8. Найти инторвачы выпуклости и точки перегиба графика функ­ции.

На основании проведенного исследования построить график функ­ции. Заметим, что приведенная схема исследования не является обя­зательной.





Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 1621 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Большинство людей упускают появившуюся возможность, потому что она бывает одета в комбинезон и с виду напоминает работу © Томас Эдисон
==> читать все изречения...

2530 - | 2189 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.