Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Быстрота сходимости процесса Ньютона




Если выполнимы все четыре условия теоремы 1, то для последовательных приближений , справедливо неравенство:

где - искомое решение, а

При сходимость метода - сверхбыстрая.

 

Единственность решения

Если выполнимы все четыре условия, в области

то содержится единственное решение системы

 

Выбор начального условия

Если выполнимы все четыре условия и , то процесс сходится к единственному решению в основной области при любом выборе начального условия из области


 

Модифицированный метод Ньютона

При использовании метода Ньютона наиболее трудоёмким является процесс вычисления обратной матрицы Якоби.

Если матрица невырождённая для некоторого приближения , и достаточно близко к (искомому решению), то можно использовать модифицированный метод Ньютона.

 

Метод итераций

Дана система нелинейных уравнений:

или

(1)

Допустим, что систему 1 можно привести к виду:

(2)

Введём обозначения:

, ,

Можно систему уравнений 2 переписать в виде:

Приведённое матричное уравнение и есть формула метода итераций

 

Необходимое и достаточное условие сходимости процесса итерации

Пусть функции и непрерывны в области , причём в области выполнимо неравенство:

где - некоторая константа.

Если последовательные приближения

,

не выходят из области , то этот процесс сходится к единственному решению системы.

 

Следствие:

оценка пиближённо

На практике лучше всего рассматривать матрицу с элементами

Для сходимости должно выполнятся условие

1)

2)

3)

 

Метод скорейшего спуска (градиентный метод)

Дана система линейных уравнений:

(1)

В матричном виде

Считаем, что действительны и непрерывно дифференцируемы в их общей области определения.

Рассмотрим функцию

(2)

Очевидно, что если мы найдём решение системы уравнений 1 , то это решение является и решением системы уравнений 2 и наоборот.

Предполагаем, что система 1 имеет лишь одно изолированное решение, представляющего собой точку строго минимум функции . Таким образом задача сводится к нахождению минимум функции в -мерном пространстве.

Берём точку - нулевое приближение. Через точку проходит поверхность уровня и . Если близка , то поверхность = будет похожа на элипсоид.

Из точки движемся по нормали к поверхности до тех пор, пока эта нормаль не коснётся другой поверхности:

И так далее.

Так как , то двигаясь таким образом, мы быстро приближаемся к точке с минимальным значением , которая соответствует некоему корню .

 

Градиент функции U

- набла или grad - есть вектор приложенный к точке , имеющий направление нормали. Из векторных произведений

, (3)

Как определить ? Для этого рассматривают скалярную функцию :

Уравнение 3 можно преобразовать так, чтобы не было явного выражения градиента. Введем обозначения , тогда итерационная формула градиентного метода будет иметь вид:

,

где

Вычисления производятся до тех пор, пока не станет справедливым следующее неравенство:

e,

где e - заданная точность вычисления.

 

Пример. Дана система нелинейных уравнений:

Найти решение системы градиентным методом с точностью e=0,01

Определим начальное приближение как:

Вектор-функция имеет вид:

Якобиан, или матрица частных производных имеет вид:

1 итерация

 

 

 

2 итерация

 

 

 

Решение системы нелинейных уравнений представлено в таблице:

 

K x ½Dx½ y ½Dy½ z ½Dz½
  0.000 0,100 0.000 0,200 0.000 0,300
  0.100 0,030 -0.200 0,250 0.300 0,250
  0,130 0,095 0,050 0,251 0,050 0,209
  0,035 0,018 -0,201 0,016 0,259 0,013
  0,017 0,003 -0,185 0,007 0,246 0,001
  0,014   -0,178   0,245  

 

Таким образом, решение системы уравнений имеет вид:

 





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 378 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2187 - | 2152 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.