Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Интерполяционная формула Лагранжа.




Пусть на отрезке [ a;b ] даны n+ 1 различных значений аргумента x: x 0, x 1,…, xn и известны соответствующие их значению функции y=f(x): f(x 0 )=y 0, f(x 1 )=y 1, f(xn)=yn. Требуется построить полином степени не выше , имеющий в заданных узлах те же значения, что и функция , т.е. Ln(xi)=yi при i=1,n

;

,

где Li(n) - коэффициенты Лагранжа.

Следует отметить, если узлы равностоящие, то интерполяционный полином Лагранжа совпадает с интерполяционной формулой Ньютона.

Примечательно то, что формула Лагранжа зависит лишь от yi, а не от разностей.

 

Частные случаи.

n= 1

При n= 1 имеем 2 точки: (x 0; y 0 ) и (x 1; y 1 ).

прямая, проходящая через эти точки-

n= 2 (x 0; y 0 ), (x 1; y 1 ), (x 2; y 2 )

Пример:

 

     
     
     
     

 

L 3 (x)=x 3 +x 2 -x+ 2

Для вычисления лагранжевых подмножеств удобно составлять следующую таблицу разности:

 

x-x0 x0-x1 x0-x2 ….. x0-xn
x1-x0 x-x1 x1-x2 ….. x1-xn
x2-x0 x2-x1 x-x2 ….. x2-x1
….. ….. ….. ….. …..
xn-x0 xn-x1 xn-x2 ….. x-xn

 

Обозначим произведение элементов i -ой строки через Di, а произведение главной диагонали Пn+ 1 (x). Отсюда следует, что:

Пn+1(x)=(x-x 0 )(x-x 1 )…(x-xn)

при i=1,n

Для упрощения вычислений можно использовать инвариантность (при равноотстоящих точках лагранжевых коэффициентов),если

x= at+b

xj= atj+b при j=0,n

то Li(n)(x)= Li(n)(t)

Схема Эйткена

 

Чаще всего требуется найти не общее выражение Ln(x), а значение его при конкретных x, тогда будет удобно пользоваться интерполяционной схемой Эйткена:

Последовательно вычисляются многочлены:

и т.д.


 

Вычисления по схеме Эйткена удобно расположить в таблице:

 

Xi Yi Xi-X Li-1,i Li-2,i-1,i Li-3,i-2,i-1,i
X0 Y0 X0-X L01 L012 L0123
X1 Y1 X1-X L12 L123 L1234
X2 Y2 X2-X L23 L234  
X3 Y3 X3-X L34    
X4 Y4 X4-X      

 

Вычисления по схеме Эйткена обычно ведутся до тех пор, пока последовательные значения L 01… n(x) и L 01… n(n+ 1 ) не совпадут по заданной точности.

Т.е. процедура является итерационной, легко реализуется и этим обеспечивает возможность автоматического контроля точности вычислений.

Пример: x= 27, =0,1

 

i xi yi xi-x Li-1,i Li-2,i-1,i Li-3,i-2,i-1,i Li-4,i-3,i-2,i-1,i
    68,7 -13 48,33 49,38 49,31  
    64,0 -10 49,71 49,26    
    44,0   48,90 48,21    
    39,1   50,46      
    32,0          

 

 

 

 


Формула Ньютона для неравностоящих узлов

Разделённые разности

Если в таблицах встречаются неравноотстоящие значения аргумента, т.е. таблицы с переменным шагом, то вводят понятие разделённых разностей.

Пусть функция задана таблично, где

- значения аргумента

- значения функции

отношения - разделённая разность первого порядка

- разделённая разность второго порядка

- разделённая разность -го порядка

Разделённые разности удобнее всего рассматривать в таблице - таблице разностей

    Разделённые разности  
    1-го 2-го 3-го 4-го
       
         
     
       
   
       
     
         
       
                 

 

 

Интерполяционная формула Ньютона для неравностоящих значений аргумента

Дано - значения аргумента

- значения функции

Апроксимировать таблично заданную функцию полиномом порядка не выше

 

Пример:

 

1-го 2-го 3-го
  1,450      
    1,127    
1,5 3,140   -0,098  
    0,795   - 0,012
3,4 4,650   -0,18  
    -0,159    
6,8 4,110      

 


 

Погрешность формулы Ньютона для неравностоящих узлов

где - промежуточное значение между точками и

 

Интерполяция сплайками

Даны: , разбитый на разные отрезки с узлами

и соответствующие им значения функции

Сплайком называется функция, которая вместе с несколькими производными непрерывна на заданном отрезке , и на каждом частичном отрезке в отдельности является некоторым алгебраическим многочленом, причём степени многочлена различны.

Степень сплайка - максимальная степень многочлена.

Дефект сплайка - разность между степенью сплайка и порядком наивысшей производной на отрезке .

На практике широкое применение получили кубические сплайки.

Таким образом для интерполяции сплайками, необходимо знать не только значения функции в точках и ; а ещё и их производные

- наклон сплайка

Как задаётся наклон сплайка?

1. Упрощённый способ

2. Если известны значения =>

3. Глобальный

Сплайки являются наиболее удобным средством апроксимации функций на небольших промежутках, то есть .

При апрксимации функций интерполяционными многочленами можно потребовать очень высокой степени полиномы, тогда как разбиения на участки, содержащих несколько участков, правда при этом в савке двух многочленов первая производная терпит разрыв.

 

Многочлены Чебышева

Особенность интерполяции функции многочленами Чебышева заключается в том, что приведённые многочлены минимизируют максимальную погрешность

 





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 979 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2210 - | 2135 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.