Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Определенные интегралы. Площади плоских фигур.




Определенный интеграл (Римана) позволяет распространить формулу площади прямоугольника на площадь более или менее произвольной плоской геометрической фигуры. В основе понятия определенного интеграла лежит так называемая интегральная сумма, определяемая следующим образом. Пусть задана функция , определенная на отрезке . Разобъем отрезок произвольным образом на частей , ¼, (, ). В частности, можно разбить на равных частей, тогда длина каждого отрезка разбиения будет равна . В общем случае, пусть

.

Возьмем, опять же произвольным образом, внутри каждого из отрезков по точке . Интегральной суммой функции на по разбиению называется число

 

 

 

 

Если , то интегральная сумма есть площадь фигуры, состоящей из прямоугольников со сторонами и , . Интуитивно ясно, что, чем меньше максимальная длина отрезков разбиения , тем точнее эта фигура из прямоугольников приближает криволинейную трапецию с основаниями , и “боковыми сторонами” , . Интеграл от функции по отрезку есть предел по всевозможным разбиениям , когда .

Предел понимается здесь в обычном смысле: число называется определенным интегралом от по (обозначается как ), если для произвольного найдется такое , что, как только разбиение отрезка удовлетворяет условию , интегральная сумма , отвечающая этому разбиению, будет отличаться от не больше, чем на : .

Геометрический смысл определенного интеграла.

Значение (с точностью до знака) есть площадь криволинейной трапеции, заключенной между графиком функции , осью абсцисс и прямыми , . В частности, если на отрезке заданы две функции и , причем , то площадь криволинейной трапеции, заключенной между графиками этих двух функций, равна .

Связь между определенным и неопределенным интегралом заключена в формуле Ньютона-Лейбница:

,

или, в другой записи, , где - произвольная первообразная функции .

Справедливы следующие две формулы – замена переменной интегрирования и интегрирование по частям.

Замена переменной.

Пусть - произвольная непрерывно дифференцируемая функция, определенная на некотором отрезке , причем , , и при любом . Тогда

Интегрирование по частям.

.

Задача 3.6.а. Найти площадь фигуры, ограниченной линиями , .

Решение. Заметим, что первое уравнение является уравнением параболы, ветви которой направлены вправо. Второе уравнение определяет прямую линию.

Найдем пересечения графиков функций и сделаем рисунок. Для этого решим систему

Û

откуда , что дает и .

 

 

3

 

0

 

 

Из рисунка видно, что фигура состоит из двух частей. При получаем сегмент параболы . При криволинейная трапеция заключена между прямой и параболой . Следовательно, площадь фигуры равна сумме двух следующих двух интегралов:

Для первого интеграла получаем:

Для второго интеграла получаем:

Таким образом, . Ответ: .

 

Задача 3.6.б. Найти площадь фигуры, ограниченной линиями , , .

Решение. На отрезке выполняется неравенство . Поэтому найдем площадь, используя формулу .

= .

 





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 454 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Жизнь - это то, что с тобой происходит, пока ты строишь планы. © Джон Леннон
==> читать все изречения...

2292 - | 2064 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.