Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Первый замечательный предел.




Можно показать, что справедливо соотношение, называемое первым замечательным пределом:

.

Рассмотрим на примере, как можно использовать данную формулу для разрешения особенностей тригонометрических функций в конечных точках.

Задача 2.1.в. Вычислить

.

Решение. Убедимся, что мы имеем дело с неопределенностью вида . При получаем:

Прежде всего, сделаем замену переменной , так, чтобы новая переменная стремилась к 0, когда :

Используя формулу преобразования суммы синусов в произведение и формулу для косинуса двойного угла, получаем

.

Отсюда

.

Пусть сначала , тогда . Чтобы свести полученное выражение к формуле , поделим и умножим на , а на :

Заменяя пределы дробей и на 1, получаем

При имеем , и предел отличается только знаком:

.

Второй замечательный предел.

Справедлива формула

Задача 2.1.г.Вычислить.

Решение. Выделим в основании показательной функции выражение вида , где при . Для этого прибавим и вычтем 1 из :

Получаем:

Используя формулу второго замечательного предела, заменим выражение в пределе при на :

Осталось найти предел показателя степени:

Ответ:

Комбинация первого и второго замечательных пределов.

Задача 2.1.д.Вычислить.

Решение. Убедимся сначала, что мы имеем дело с неопределенностью вида . Предел основания степени равен . Предел показателя степени равен . Неопределенность вида указывает, что для ее раскрытия следует воспользоваться вторым замечательным пределом. Выделим структуру второго замечательного предела в нашей формуле:

Теперь остается найти предел показателя степени. Делая замену переменной , получаем

Ответ: .

Особенность вида .

Задача 2.1.е. Вычислить

Решение. Чтобы свести данный предел к формуле первого замечательного предела, проведем следующее преобразование:

.

Мы воспользовались формулой

.

Поскольку

,

получаем

.

Остается сделать замену , откуда , , .

В результате получаем

Ответ: .

Производные.

Производной функции в точке называется предел

.

Наряду с обозначением для производной используется еще обозначение .

Производные основных элементарных функций приведены в следующей таблице.

 

Рассмотрим дифференцирование степенной функции при некоторых .

Имеется два основных приема дифференцирования функций

1) Формуладифференцирования произведения и частного двух функций

,

.

2) Формула дифференцирования композиции (или сложной функции)

.





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 342 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2438 - | 2357 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.