Линейные модели обычно применяются для анализа простых взаимосвязей между экономическими показателями. Однако в ряде случаев экономические соотношения имеют более сложный характер и их представление в виде линейной зависимости не всегда возможно, а часто и не корректно.
Однако часто нелинейные связи между объясняющими и объясняемой переменной можно с помощью определенных преобразований свести к линейным.
К таким нелинейным связям в частности относятся:
1) Нелинейные регрессии относительно объясняющих переменных Хi, но линейные по оцениваемым параметрам
i .
а) Y =
0 +
1 Х +
2 Х 2 + …+
m Хm +
- степенной полином.
б) Y =
0 +
1
+
- равносторонняя гипербола.
2) Регрессии нелинейные по оцениваемым параметрам
i .
а) Y = А
- показательная функция.
б) Y = A
- степенная функция.
в) Y =
- экспоненциальная функция.
Нелинейности первого вида приводятся к линейным регрессиям с помощью преобразования объясняющих переменных (введением новых переменных).
Примеры.
Y =
0 +
1 Х +
2 Х 2 + …
Y =
0 +
1 Х 1* +
2 Х 2* + …+
m Хm +
, (3.1)
где Х 1* = Х; Х 2* = Х 2, …, Х m* = Х m.
Y =
0 +
1
+
Y =
0 +
1 Х * +
, (3.2)
где Х * =
.
Оценка коэффициентов
осуществляется по уравнению (3.1) с использованием метода МНК оценки для множественной линейной регрессии.
Выражение (3.2) соответствует парной линейной регрессии.
Нелинейности второго вида приводятся к линейным с помощью операции логарифмирования.
Пример.
В качестве примера рассмотрим производственную функцию Кобба-Дугласа
Y = A
, (3.3)
где Y – объем производства; К – затраты капитала; L – затраты труда;
- случайное возмущение;
1,
2 – коэффициенты частной эластичности объема производства Y по затратам капитала К и труда L; A – постоянный коэффициент.
Логарифмируя обе части уравнения (3.3) для i – го наблюдения, получим
ln yi = ln A +
1 ln Ki +
2 ln Li + ln
i . (3.4)
Переобозначив переменные в (3.4)
yi * = ln yi ; Х 1 i = ln Ki ; Х 2 i = ln Li ;
0 = ln A;
= ln
i,
получим
yi * =
0 +
1 Х 1 i +
2 Х 2 i +
(3.5)
Для выборки объема n в матричной форме уравнение (3.5) запишется в виде
, (3.6)
где
= (y1 * , y2 * ,…, yn * ) T ; В = (
0,
1 ,
2 ) Т ;
.
Таким образом, алгоритм оценки параметров нелинейной регрессии состоит из предварительного преобразования нелинейной модели к линейной и оценки ее параметров обычным образом с использованием МНК. После чего осуществляются обратные преобразования и возврат к исходному нелинейному уравнению.
Для нелинейной регрессии значимость уравнения в целом характеризуется также, как и в линейной регрессии с помощью коэффициента детерминации
:
= 1 – (1 – R 2)
, (3.7)
где R 2 = 1 -
. (3.8)
В (3.8)
определяется по исходному нелинейному уравнению регрессии.
Примечание. Значимость коэффициентов регрессии осуществляется по линеаризованному уравнению. Поэтому, если в линеаризованном уравнении присутствует не bi, а ln bi, тогда Т -статистика этого параметра будет:
Тbi =
,
и характеризует значимость не самого коэффициента bi, а его логарифма.
При описании статистической зависимости между экономическими переменными различными функциональными соотношениями выбор наилучшей модели осуществляется следующим образом. Выбираются уравнения с наибольшими значениями
. Если таких уравнений несколько (примерно с одинаковыми значениями
), то выбирается модель, у которой наименьшая
или наименьшая остаточная дисперсия
.






