Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Основные теоретические сведения. Практикум по эконометрике в среде EXCEL




Практикум по эконометрике в среде EXCEL

Учебное пособие

 

ОГЛАВЛЕНИЕ

Предисловие ……………………………………………………………………… 5

 

 

Глава I. Парная линейная регрессия …………………………………………. 6

 

1.1. Основные теоретические сведения..................................................... 6

1.2. Реализация задания на компьютере с помощью ППП Excel ……... 9

1.3. Контрольные задания ………………………………………..………. 17

Вопросы для подготовки к защите индивидуального задания ……….... 31

 

 

Глава II. Множественная линейная регрессия ……………………………… 32

 

2.1. Основные теоретические сведения ………………………………... 32

2.2. Реализация задания на компьютере с помощью ППП Excel ……… 36

2.3. Контрольные задания ……………………………………………….. 41

Вопросы для подготовки к защите индивидуального задания ………… 58

 

 

Глава III. Нелинейная регрессия ……………………………………………….. 60

 

3.1. Основные теоретические сведения ………………………………… 60

3.2. Реализация задания на компьютере с помощью ППП Excel ……… 62

Вопросы для подготовки к защите индивидуального задания ………… 68

 

 

Глава IV. Нарушение предпосылок МНК и их корректировка …………… 69

 

4.1. Основные теоретические сведения ………………………………... 69

4.1.1. Гетероскедастичность ……………………………………….... 69

4.1.2. Автокорреляция ……………………………………………….. 73

4.1.3. Мультиколлинеарность ………………………………………. 74

 

4.2. Реализация задания на компьютере с помощью ППП Excel …….... 76

4.2.1. Проверка наличия гетероскедастичности …………………… 77

4.2.2. Проверка наличия мультиколлинеарности …………………. 80

4.2.3. Проверка наличия автокорреляции …………………………. 82

Вопросы для подготовки к защите индивидуального задания ………... 83

 

 

Глава V. Временные ряды ……………………..……………………………….. 84

 

5.1. Основные теоретические сведения ………………………………... 84

5.1.1. Основные понятия и определения …………………………… 84

5.1.2. Этапы построения прогноза по временным рядам …………. 85

 

5.2. Реализация задания на компьютере с помощью ППП Excel ……… 91

5.3. Контрольные задания ………………………………………………... 104

Вопросы для подготовки к защите индивидуального задания ………… 120

 

Литература ………………………………………………………………………... 121

 

 

Приложения ………………………………………………………………………. 122

 

ПРЕДИСЛОВИЕ

Данное учебное пособие посвящено основам эконометрического моделирования и предназначено для развития у студентов практических навыков решения конкретных экономических и финансовых задач с использованием компьютерных технологий. Под эконометрическим моделированием понимается процесс построения, изучения и применения эконометрических моделей.

Учебное пособие состоит из пяти глав, в которых рассматриваются вопросы линейного регрессионного моделирования (парная и множественная регрессия), нелинейные регрессионные модели и модели временных рядов. При построении модели студенты должны также научиться давать статистическую оценку значимости искажающих эффектов: гетероскедастичности, мультиколлинеарности, автокорреляции и по возможности осуществлять их коррекцию. Этим вопросам посвящена глава 4 «Нарушение предпосылок МНК и их корректировка». Все главы пособия имеют идентичную структуру:

- краткие теоретические сведения, включающие основные понятия, определения, формулы;

- примеры реализации типовых задач на компьютере с помощью ППП Ехсеl;

- задания, включающие набор задач в нескольких вариантах, предлагаемые студентам для самостоятельного решения на компьютере;

- контрольные вопросы, охватывающие основные положения теоретического материала, для подготовки студентов к защите своих индивидуальных заданий.

Примеры решения задач включают фрагмент или полный текст рабочего документа Ехсеl, снабженный комментариями и краткими указаниями, помогающими реализовать решение задачи на компьютере. Решения, полученные в Ехсеl, обведены рамками и представлены в виде рисунков.

Для повышения эффективности изучения дисциплины «Эконометрика» рекомендуется использовать данное пособие для выполнения студентами индивидуальных заданий. Варианты заданий представлены в каждой главе. Итогом курса является их защита.

 

 

Глава I

ПАРНАЯ ЛИНЕЙНАЯ РЕГРЕССИЯ

Основные теоретические сведения

В общем случае регрессия – функциональная зависимость между объясняющими переменными Хj и объясняемой переменной Y, которая строится с целью прогнозирования среднего значения Y при заданных значениях Хj =xj, или для анализа влияния отдельных переменных Хj, на зависимую переменную.

Различают уравнения регрессии I и II рода.

Уравнением регрессии первого рода называют уравнение вида:

. (1.1)

Если уравнение (1.1) представляет собой уравнение связи двух случайных величин Y и Х, то это уравнение представляет собой уравнение парной регрессии. В предположении нормального распределения случайной величины (Y, Х) парную регрессию называют линейной парной регрессией, т.к. в этом случае условное математическое ожидание (1.1) представляет собой уравнение прямой линии

Y = M (Y / x) = 0 + 1 Х. (1.2)

Для точного описания уравнения регрессии необходимо знать условный закон распределения зависимой переменной Y при условии, что переменная Х примет значение х. В связи с тем, что реальные значения переменной Y не всегда совпадают с ее средним значением M (Y / x), то в уравнение регрессии вводится случайная составляющая . Тогда уравнение (1.2) можно записать в виде:

Y* = M (Y / x) + (1.3)

 

или для конкретных наблюдений (у i, x i):

= 0 + 1 xi + i, . (1.4)

Уравнение (1.4) называют теоретической линейной моделью.

Возмущения i, должны удовлетворять основным предпосылкам регрессионного анализа:

1. Математическое ожидание возмущения i равно нулю

или

0 + 1 xi.

2. Дисперсия возмущения i постоянна для любого i, т.е.

, .

3. Возмущения i и j являются независимыми друг от друга, что влечет за собой отсутствие автокорреляции

.

4. Возмущения i представляет собой нормально распределенную случайную величину.

Обычно исследователь имеет дело с исходными данными выборки объемом n, где каждое наблюдение – есть точка (Y, Х) в (m +1) – мерном пространстве. Здесь m – число объясняющих переменных.

В случае парной регрессии имеется выборка объемом n двумерной случайной величины (Y, Х).

Уравнением регрессии второго рода называют эмпирическое уравнение регрессии, которое строится на основе данных выборки.

Рассматривается парная линейная регрессия, когда уравнение регрессии второго рода имеет вид

i = М [ Y/X=x ] = b 0 + b 1 xi, . (1.5)

С учетом уравнения (1.3) эмпирическую линейную модель связи переменных Y и Х запишем в виде:

yi = b 0 + b 1 xi + ei, (1.6)

 

где i, b 0, b 1, e i – оценки соответственно yi, 0, 1, i.

Построение уравнения регрессии начинается с построения корреляционного поля, представляющего собой графическую зависимость в виде точек случайной величины (Y, Х) на плоскости y 0 x. По расположению эмпирических точек делается вывод о наличии линейной корреляционной зависимости между переменными Y и Х. Дальнейшее построение уравнения регрессии сводится к оценке ее параметров, используя метод наименьших квадратов (МНК). В этом случае неизвестные параметры b 0 и b 1 выбираются так, чтобы сумма квадратов отклонений эмпирических значений yi от значений i, найденных по уравнению регрессии (1.5), была минимальной

min.

Применение МНК обусловлено тем, что он позволяет получить несмещенные оценки с минимальной дисперсией, в условиях, когда i удовлетворяют всем предпосылкам регрессионного анализа.

В результате операции МНК оценка выборочного коэффициента регрессии b 1 определяется выражением:

b 1 = Cov (X, Y) / , (1.7)

а коэффициента b 0:

b 0 = , (1.8)

где = уi / n; = хi / n; Cov (X, Y) = ; = .

 

Точность оценок коэффициентов линейного уравнения регрессии первого рода характеризуется их выборочными дисперсиями, которые вычисляются по формулам:

 

, (1.9)

. (1.10)

Здесь S 2 – дисперсия регрессии – оценка дисперсии , определяемая по формулам: S 2 = еi 2 /(n – 2), еi = yi - b 0 - b 1 xi.

Проверка качества уравнения регрессии осуществляется по ряду позиций.

Оценка статистической значимости коэффициентов регрессии заключается в проверке основной гипотезы Н0 о значимости отличия коэффициентов b0 и b1 от нуля. С этой целью используется критерий Стьюдента. Вычисляются, и сравниваются с tкрит. Результатом сравнения является вывод о значимости коэффициентов b0 и b1.

2. Интервальные оценки коэффициентов уравнения регрессии.

Так как объем выборки ограничен, то b 0 и b 1 – случайные величины, поэтому желательно найти доверительные интервалы для истинных значений 0, 1. Для этого также используется статистика

, i = 0,1,

которая имеет t – распределение Стьюдента с степенями свободы. Интервальные оценки параметров i при заданном уровне значимости имеют вид

, i = 0,1,

с надежностью р = 1- . Здесь tкрит – критическое значение распределения Стьюдента, взятое из таблицы с параметрами и /2.

3. Проверка значимости уравнения регрессии в целом.

Позволяет установить, соответствует ли математическая модель экспериментальным данным и достаточно ли включенных в уравнение объясняющих переменных для описания зависимой переменной. Проверка значимости уравнения регрессии производится на основе дисперсионного анализа. Мерой общего качества уравнения регрессии является коэффициент детерминации R2:

R 2 = 1 - еi 2 / (yi - )2. (1.11)

Выражение (1.11) вытекает из соотношения:

 

(yi - )2 = ki 2 + ei 2, (1.12)

где ki 2 = ( i - )2 – объясненная регрессией сумма квадратов. Характеризует разброс, обусловленный регрессией;

ei 2 = (yi - i)2 – остаточная (необъясненная) сумма квадратов – характеризует случайную составляющую разброса yi относительно линии регрессии .

Из соотношений (1.11) и (1.12) следует, что коэффициент детерминации R 2 есть не что иное, как:

 

R 2 = ki 2 / (yi - )2. (1.13)

 

Таким образом, коэффициент детерминации можно вычислить по (1.11) или по (1.13).

Основная цель использования уравнения регрессии - прогноз значений зависимой переменной.

Здесь речь идет о возможных значениях Yр при определенных значениях объясняющей переменной Хр. Так как задача решается в условиях неопределенности то прогноз удобнее всего давать на основе интервальных оценок, построенных с заданной надежностью .

Причем здесь возможно два подхода: 1) предсказание среднего значения, т.е. M (Y / Х = xр); 2) предсказание индивидуальных значений Y / Х = xр.

Интервальный прогноз для среднего значения вычисляется следующим образом:

р tкр S , (1.14)

где р = b 0 + b 1 xр; t кр – критическое значение, полученное по распределению Стьюдента при количестве степеней свободы = n – 2 и заданной вероятности /2.

Интервальный прогноз для индивидуального значения вычисляется по формуле:

р tкр S . (1.15)

 





Поделиться с друзьями:


Дата добавления: 2016-11-23; Мы поможем в написании ваших работ!; просмотров: 533 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Велико ли, мало ли дело, его надо делать. © Неизвестно
==> читать все изречения...

2489 - | 2155 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.