Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Постановка задачи оптимального управления




Рассмотрим задачу оптимального управления:

, (9.1.1)

, , , (9.1.2)

, (9.1.3)

, (9.1.4)

, – кусочно–непрерывна

Моменты времени , будем считать заданными. Дифференциальные уравнения в (9.1.2) описывают движение некоторого управляемого объекта (течение управляемого процесса, изменения управляемой системы) в зависимости от времени t. Предполагается, что вектор (фазовые координаты) характеризует движение объекта (например, координаты объекта), а вектор характеризует управление объектом (например, «положения рулей» объекта) в момент времени t. Согласно (9.1.2), начальное состояние объекта определено . Если управление определено, то фазовые координаты объекта определяются как решение задачи Коши

, , .

Для приближенного решения задачи разобьем отрезок на частей точками и приняв эти точки в качестве узловых, заменим интеграл в (9.1.1) квадратурной формулой прямоугольников, уравнения (9.1.2) – разностными формулами с помощью явной схемы Эйлера. В результате придем к дискретной задаче оптимального управления:

, (9.1.5)

, , , , (9.1.6)

, , (9.1.7)

, , , (9.1.8)

где , , , . Задача (9.1.5)– (9.1.8) имеет самостоятельный интерес и возникает при описании управляемых дискретных систем, в которых сигналы управления поступают в дискретные моменты времени, фазовые координаты также меняются дискретно.

Система (9.1.6) с некоторым дискретным управлением однозначно определяет соответствующую дискретную траекторию обозначим ее . Зафиксируем некоторое и через обозначим множество управлений таких, что 1) выполнены условия (9.1.8); 2) дискретная траектория , соответствующая управлению и выбранному начальному условию , удовлетворяет ограничениям (9.1.7). Следовательно:

удовлетворяет (9.1. 8); траектория удовлетворяет (9.1.7)}.

Пару (u0, х0), состоящую из управления и траектории, будем называть допустимой для задачи (9.1.5)–(9.1.8), если эта пара удовлетворяет всем условиям (9.1.6)–(9.1.8) или, иначе говоря, . Если при всех , то условия (9.1.6)–

(9.1.8) несовместны и функция (9.1.5) будет определена на пустом множестве.

Обозначим

.

Задача (9.1.5)–(9.1.8) формулируется кратко:

минимизировать при .

Допустимую пару назовем решением задачи (9.1.5)–(9.1.8), если

.

Будем называть – оптимальным управлением, – оптимальной траекторией задачи (9.1.5)–(9.1.8).

Задача (9.1.5)–(9.1.8) является задачей минимизации функции переменных и для ее решения, в принципе, могут быть использованы методы нелинейного программирования (НЛП). Отмеченная размерность в практических задачах может быть очень высокой, а множества , заданы неявно, что сильно усложняет задачу НЛП.





Поделиться с друзьями:


Дата добавления: 2015-02-12; Мы поможем в написании ваших работ!; просмотров: 540 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студенческая общага - это место, где меня научили готовить 20 блюд из макарон и 40 из доширака. А майонез - это вообще десерт. © Неизвестно
==> читать все изречения...

2346 - | 2304 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.