Лекция№3. Представление сигналов с ограниченной полосой частот в виде ряда Котельникова
Лекции.Орг

Поиск:


Лекция№3. Представление сигналов с ограниченной полосой частот в виде ряда Котельникова




В теории и технике сигналов широко используется теорема Котельникова (теорема отсчетов): если наивысшая частота в спектре функции меньше, чем , то функция полностью определяется последовательностью значений в момент времени, отстоящие друг от друга не больше чем на секунд.

В соответствии с этой теоремой сигнал ограниченный по спектру наивысшей частотой , можно представить рядом

(3.1)

В этом выражении обозначает интервал между двумя отсчетными точками на оси времени, а -выборка функции в момент времени .

Представление функции рядом иллюстрирует рис.3.10:

рис.3.1

Функция вида

(3.2)

обладает следующими свойствами:

1. в точке , а в точках , где - любое целое положительное или отрицательное число, отличное от

2. спектральная плотность функции равномерна в полосе частот и равна .

Так как функция отличается от только сдвигом на оси времени на , то спектральная плотность функции

(3.3)

Ряд (3.1) точно определяет заданный сигнал в точках отсчета, поскольку коэффициенты ряда есть сами выборки из функции, т.е. величины .

Рассмотрим случай когда длительность сигнала конечна и равна , а полоса частот равна . При этом случае и определенных допущениях общее число независимых параметров (т.е. значений ), которое необходимо для полного задания сигнала, очевидно будет

При этом выражении (3.1) принимает вид (при отсчете времени от первой выборки):

(3.4)

Число иногда называют числом степеней свободы сигнала , а иногда и базой сигнала.

Энергию и среднюю мощность сигнала нетрудно выразить через заданную последовательность временных выборок.

Средняя за время мощность непрерывного сигнала равна среднему квадрату выборки, число которых равно .





Дата добавления: 2015-02-12; просмотров: 538 | Нарушение авторских прав | Изречения для студентов


Читайте также:

Рекомендуемый контект:


Поиск на сайте:



© 2015-2020 lektsii.org - Контакты - Последнее добавление

Ген: 0.002 с.