Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Треугольный импульс




Импульс определяется выражением (рис.2.6)

рис.2.6 рис.2.7

Применим свойства спектров. Найдем спектральную плотность функции, являющейся производной от заданного сигнала (рис.2.7) . Спектральная плотность прямоугольного импульса длительностью и амплитудой по аналогии с формулой (2.21) и с учетом сдвига середины импульса на время относительно точки .

Спектральная плотность отрицательного импульса, показанного на рис.2.7, соответственно

Суммарная плотность двух импульсов

Спектральная плотность треугольного импульса, являющегося интегралом от функций , получается делением предыдущего выражения на :

(2.22)

Множитель -площадь треугольного импульса. Уровень боковых лепестков спектра треугольного импульса убывает пропорционально , а не на, как в случае прямоугольного импульса (рис.2.6)

рис.2.6





Поделиться с друзьями:


Дата добавления: 2015-02-12; Мы поможем в написании ваших работ!; просмотров: 1363 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2255 - | 2185 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.