Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Пример 1. Определение статистических характеристик прочности бетона




По полученной, в результате 100 испытаний образцов бетона на прочность при сжатии, случайной выборке, построить статистический ряд распределения, гистограмму плотности распределения, гистограмму функции распределения и определить математическое ожидание (марочную прочность), дисперсию, стандарт, коэффициент вариации, класс бетона (нормативную кубиковую прочность).

Таблица 3

Случайная выборка 100 испытаний образцов бетона на прочность при сжатии

23,70 22,60 21,60 24,40 22,00 25,60 20,10 25,30 26,70 22,40
21,70 23,70 23,30 22,80 18,20 23,60 22,50 24,00 19,60 21,60
22,60 22,30 24,60 20,70 22,90 20,00 24,40 23,80 25,30 24,70
24,10 21,70 23,10 23,80 23,00 24,70 24,60 21,30 22,80 23,70
21,90 22,10 21,40 19,90 22,40 22,80 22,30 23,40 23,70 24,80
19,80 26,90 24,50 22,70 22,10 23,30 20,10 24,00 22,80 21,40
22,00 20,90 22,00 24,70 22,60 24,30 24,30 21,90 20,50 21,00
23,50 21,00 22,30 21,40 21,40 23,00 23,30 22,00 24,90 21,50
24,80 22,10 21,40 22,10 23,70 22,70 23,40 24,00 23,60 23,50
21,50 22,90 21,60 21,50 21,70 21,80 18,80 23,20 22,30 24,50

 

Построим статистический ряд распределения прочности (таблица 4). В первой строке таблицы записываем разряды в порядке их расположения вдоль оси абсцисс (принимаем десять одинаковых разрядов); во второй строке – количество попаданий m i значений случайной величины в данный интервал; в третьей – соответствующие частоты pi.

Таблица 4

Статистический ряд распределения прочности бетона при сжатии

Ii 18,20; 19,07 19,07; 19,94 19,94; 20,81 20,81; 21,68 21,68; 22,55 22,55; 23,42 23,42; 24,29 24,29; 25,16 25,16; 26,03 26,03; 26,90
mi                    
pi 0,02 0,03 0,05 0,15 0,21 0,2 0,14 0,14 0,04 0,02

 

Рис. 6. Гистограмма плотности распределения p (Ri)

 

 

Рис. 7. Гистограмма функции распределения F (Ri)

 

 

Построим гистограмму плотности распределения (рис. 6) и гистограмму функции распределения (рис. 7).

Определяем математическое ожидание (марочную прочность) по формуле (I.4)

где Ri – среднее значение прочности на каждом интервале, равное .

M[R]=18,635×0,02+19,505×0,03+20,375×0,05+21,245×0,15+22,115×0,21+22,985´ ´0,2+23,855×0,14+24,725×0,14+25,595×0,04+26,465×0,02=22,71 МПа.

Определяем дисперсию по формуле (I.8) (18,635 –– 22,71)2×0,02+(19,505 – 22,71)2×0,03+(20,375 – 22,71)2×0,05+(21,245 – 22,71)2´ ´ 0,15 +(22,115 – 22,71)2×0,21+(22,985 – 22,71)2×0,2+(23,855 – 22,71)2×0,14+ +(24,725 – 22,71)2×0,14+(25,595 – 22,71)2×0,04+(26,465 – 22,71)2×0,02= =2,54 МПа2.

Определяем среднеквадратическое отклонение по формуле (I.9) 1,59 МПа.

Покажем на гистограммах кривые плотности распределения и интегральной функции распределения, подставив в формулы (I.16) и (I.17) полученные значения математического ожидания и среднеквадратического отклонения (рис. 6 и 7).

Определяем коэффициент вариации прочности бетона: 0,07.

Зная марочную прочность бетона и коэффициент вариации, определим класс бетона:

(I.24)

.

 





Поделиться с друзьями:


Дата добавления: 2015-05-08; Мы поможем в написании ваших работ!; просмотров: 2111 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

2307 - | 2164 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.