Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Определение. Цилиндрической поверхностью называется геометрическое место параллельных прямых, пересекающих данную линию




Цилиндрической поверхностью называется геометрическое место параллельных прямых, пересекающих данную линию. Эта линия называется направляющей, а параллельные прямые -- образующими.

Рассмотрим уравнение вида . Покажем, что оно определяет цилиндрическую поверхность с образующими, параллельными оси . Пусть - некоторая точка, координаты которой удовлетворяют уравнению. Поскольку в это уравнение не входит явно переменная , ему будут удовлетворять координаты всех точек , где - любое число. Следовательно, при любом точка лежит на поверхности, определяемой уравнением. Отсюда следует, что на поверхности целиком лежит прямая, проходящая через точку параллельно оси . А это означает, что поверхность, определяемая уравнением, составлена из прямых, параллельных оси , то есть она является цилиндрической поверхностью.

Заметим, что на плоскости уравнение определяет направляющую рассматриваемой цилиндрической поверхности.

Итак, делаем вывод, что если уравнение поверхности не содержит в явном виде какой-либо переменной, то это уравнение определяет в пространстве цилиндрическую поверхность с образующими, параллельными оси отсутствующего переменного и направляющей, которая в плоскости двух других переменных имеет то же самое уравнение.

Нас будут интересовать только те цилиндрические поверхности, которые являются поверхностями второго порядка.





Поделиться с друзьями:


Дата добавления: 2015-05-07; Мы поможем в написании ваших работ!; просмотров: 550 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинайте делать все, что вы можете сделать – и даже то, о чем можете хотя бы мечтать. В смелости гений, сила и магия. © Иоганн Вольфганг Гете
==> читать все изречения...

2312 - | 2095 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.