Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Бинарные отношения. Определение 14. Бинарным отношением называется всякое множество упорядоченных пар




Определение 14. Бинарным отношением называется всякое множество упорядоченных пар.

В математике при рассмотрении связи между объектами используют термин «отношение». Примерами отношений являются:

1) «» - на множестве ℝ.

2) «» - на множестве P(U).

3) «» - между множеством всех точек плоскости и множеством всех прямых:

           
   
   
 

 


M N K

 

 

a b c

 

 

Упорядоченные пары (M,a),(N,b),(K,c) удовлетворяют условию третьего пункта, а (M,b) не удовлетворяет условию третьего пункта.

Для того, чтобы определить бинарное отношение, достаточно задать множество объектов, для которых имеет смысл говорить о данном отношении, и выбрать из него те пары объектов, которые удовлетворяют рассматриваемому отношению.

Определение 15. Бинарным отношением между множествами A и B называется всякое подмножество множества .

Бинарные отношения обозначают следующим образом: . Если , то называется бинарным отношением на множестве A.

Замечание. Если , где , то говорят, что элемент находится в отношении с элементом , и часто пишут , т.е. .

Определение 16. Пусть R – бинарное отношение между множествами A и B. Областью определения бинарного отношения R называется множество первых координат всех пар из R, и обозначается Dom R, т.е. .

Определение 17. Пусть R – бинарное отношение между множествами A и B. Областью значений бинарного отношения R называется множество вторых координат всех пар из R, и обозначается Im R, т.е. .

Определение18. Пусть R – бинарное отношение между множествами A и B. Множество D(R)= Dom R Im R называется областью отношений бинарного отношения R.

Определение 19. Пусть - множества, n-арным отношением между множествами называется всякое подмножество множества .

При n=1 мы получаем унарные отношения, при n=2 - бинарные отношения, при n=3 – тернарные отношения.

 

 





Поделиться с друзьями:


Дата добавления: 2015-05-06; Мы поможем в написании ваших работ!; просмотров: 656 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наглость – это ругаться с преподавателем по поводу четверки, хотя перед экзаменом уверен, что не знаешь даже на два. © Неизвестно
==> читать все изречения...

2684 - | 2249 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.