Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Уравнения плоского движения.




В предыдущей главе были рассмотрены два наиболее простых случая движения твердого тела: поступательное и вращательное вокруг неподвижной оси. Перейдем теперь к изучению более сложного случая движения – плоского - параллельного движения твердого тела, или (сокращённо) плоского движения. Под плоским движением понимают движение, при котором все точки твердого тела, расположенные в плоскостях, параллельных некоторой неподвижной плоскости, во все время движения остаются в тех же плоскостях. Если разбить мысленно тело на плоские сечения, параллельные заданной плоскости, то эти сечения будут скользить каждое в своей плоскости. Этот случай движения имеет большое техническое значение; ме­ханизмы, встречающиеся в технике, за немногочисленными исклю­чениями, представляют системы твердых тел, совершающих плоское движение. Вращение тела вокруг неподвижной оси является частным случаем плос

…Рис. 28 кого движения; движение колеса по прямолинейному пути дает еще один пример; плоское движение совершают также механизмы для вычерчивания разных кривых (эллипсограф, конхоидограф), всевозможные кулисные механизмы, эпициклические механизмы, применяемые в редукторах скоро стей, и т. д. Пусть тело А (рис. 28) совершает движение, параллельное пло­скости П. Проведем мысленно в теле ряд плоскостей П', II",..., параллельных П. Тело разобьется на ряд плоских фигур S', S",…. Движение одной такой плоской фигуры вполне опреде­ляет движение всего твердого тела, так как плоскости, которыми мы разбили твердое тело, друг с другом не

Рис 29 изменно связаны и не могут двигаться друг по отношению к другу. Если мы возьмем в какой-нибудь фигуре S' точку М и восста­вим в ней перпендикуляр к плоскости фигуры S, то точки М и М" фигур S' и S", лежащие на этом перпендикуляре, будут иметь одинаковое движение, т. е. будут описывать одинаковые траектории, иметь одинаковые скорости, одинаковые ускорения. Таким образом, можно значительно упростить изучение плоскою движения твердого тела — достаточно изучить движение одной пло­ской фигуры в ее плоскости. Следует здесь отметить, что при плоском движении тела все перемещения, скорости и ускорения точек должны лежать в плоскости фигуры. Возьмем две системы осей в плоскости движения фигуры: одну систему Оху неподвижную, другую - О'х'у', неизменно связанную с движущейся фигурой (рис. 29). Положение точки М фигуры в неподвижной плоскости будем определять вектор-радиусом , проведенным из начала О неподвижной системы осей; выбор рассматриваемой точки фигуры определяется указанием вектора ', проведеного из начала О' подвижной системы. Вектор-радиус начала О' относительно О обозначим через . Тогда

Проекции вектора (t) на оси х и у могут быть записаны в виде

(2.15)

Декартовы координаты х' и точки М в системе под­вижных осей остаются постоянными.





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 472 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2333 - | 2011 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.