Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Абсолютное, относительное и переносное движения.




 

Общая постановка задачи об относительном движении такова: движение точки определяется наблюдателями, связанными с двумя различными координатными системами (системами отсчета), причем эти системы движутся заданным образом друг по отношению к другу. Каждый наблюдатель определяет кинематические элементы движе­ния: траекторию, скорость и ускорение в своей системе отсчета. Ставится задача: зная движение одной системы отсчета по отно­шению к другой, найти связь между кинематическими элементами движения точки по отношению к каждой системе в отдельности. Предположим, что движение точки М в пространстве рассма­тривается в двух движущихся друг по отношению к другу системах координат: Oxyz, и (рис.41). В зависимости от содержания стоящей перед нами задачи одну из этих систем Oxyz примем за основную и назовем абсолютной системой и все кине­матические элементы его абсолютными. Другую систему назовем относительной и соответственно движение по отношению к этой системе, а также его кинематические элементы относитель­ными. Термины «абсолютный» и «относительный» имеют здесь ус­ловное значение; при рассмотрении движений может оказаться целе­сообразным то одну, то другую систему принимать за абсолютную. Элементы абсолютного движения будем обозначать подстрочным индексом «а», а относительного — индексом «r».

Введем понятие переносного движения, элементы которого будем обозначать подстрочным индексом «е». Переносным движением точки будем называть движение (по отношению к абсолютной системе) того пункта относительной системы, через который в рассматриваемый момент времени проходит движущаяся точка. Понятие переносного движения нуждается в пояснении. Необхо­димо четко различать точку, абсолютное и относительное движение которой рассматривается, от той, неизменно связанной с относи­тельной системой точки, через которую в данный момент проходит движущаяся точка. Обычно та и другая точка обо­значены одной буквой М, так как рисунок не передает движения; на самом деле это две различные точки, движущиеся друг по от­ношению к другу.

Остановимся на двух иллюстрациях понятия переносного дви­жения. Если человек идет по движущейся платформе, то можно рассматривать, во-первых, «абсолютное» движение человека по от­ношению к земле, во-вторых, «относительное» его движение по платформе. Переносным движением при этом будет являться движе­ние по отношению к земле того места платформы, по которому проходит в данный момент человек.

Возвращаясь к рис. 41, найдем за­висимость между вектор-радиусами точки М в разных системах координат. Если обозначить вектор-радиусы точки М через в абсолютной системе Oxyz и в отно­сительной системе , а вектор-радиус точки О' по отноше­нию к системе Oxyz через , то

(2.32)

Принципиальное отличие равенств (2.32) от имеющих тот же внеш­ний вид уравнений движения твердого тела заклю­чается в том, что в выражении (2.32) уже не постоянный вектор, определяющие выбор точки твердого тела, а вектор-функция времени, характеризующий относитель­ное движение точки М.





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 645 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лаской почти всегда добьешься больше, чем грубой силой. © Неизвестно
==> читать все изречения...

2390 - | 2261 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.